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ABSTRACT
As the scale of software projects increases, the code comments are
more and more important for program comprehension. Unfortu-
nately, many code comments are missing, mismatched or outdated
due to tight development schedule or other reasons. Automatic
code comment generation is of great help for developers to com-
prehend source code and reduce their workload. Thus, we propose
a code comment generation tool (DeepCommenter) to generate de-
scriptive comments for Java methods. DeepCommenter formulates
the comment generation task as a machine translation problem
and exploits a deep neural network that combines the lexical and
structural information of Java methods.

We implement DeepCommenter in the form of an Integrated
Development Environment (i.e., Intellij IDEA) plug-in. Such plug-in
is built upon a Client/Server architecture. The client formats the
code selected by the user, sends request to the server and inserts
the comment generated by the server above the selected code. The
server listens for client’s request, analyzes the requested code using
the pre-trained model and sends back the generated comment to the
client. The pre-trained model learns both the lexical and syntactical
information from source code tokens and Abstract Syntax Trees
(AST) respectively and combines these two types of information
together to generate comments. To evaluate DeepCommenter, we
conduct experiments on a large corpus built from a large number
of open source Java projects on GitHub. The experimental results
on different metrics show that DeepCommenter outperforms the
state-of-the-art approaches by a substantial margin.
Demo URL: https://youtu.be/acdH5X-eBw4
Plug-in download: https://git.io/JegwQ
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• Software and its engineering→ Software development tech-
niques.
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1 INTRODUCTION
As the scale of software projects increases, it’s getting harder for
developers to comprehend code. Code comments are helpful for pro-
gram comprehension [18, 22]. Unfortunately, code comments may
often be missing, mismatched or outdated due to tight development
schedule or other reasons in many projects [11]. Automatic code
comments generation can not only help developers in understand-
ing source code, but also saving time needed to write comments.

The process of code comment generation is similar to the ma-
chine translation process. However, code comment generation is
more challenging compared to machine translation since there are
two main challenges: 1) Source code is structured. Source code writ-
ten in programming languages is structured and unambiguous, and
the main challenge and chance is how to apply unambiguous struc-
ture information to the existing Neural Machine Translation (NMT)
techniques [1]. 2) Vocabulary. The vocabulary in natural language
corpora is usually limited to 30,000 words, but in our Java code
corpus, we get 794,711 unique tokens. If the common 30,000 tokens
are used as the vocabulary, about 95% identifiers will be regarded
as unknown tokens, i.e., ⟨UNK⟩, so it’s not suitable for our task.

To address the challenges mentioned above, we proposed a deep
code comment generation approach with hybrid lexical and syntac-
tical information (i.e., Hybrid-DeepCom) in our previous work [11].
Hybrid-DeepCom customizes a sequence-based language model
to analyze the Abstract Syntax Trees (AST) and source code at
the same time. It learns the syntactic and lexical information from
the AST and the source code respectively. The ASTs are converted
into sequences before fed into Hybrid-DeepCom. Hybrid-DeepCom
designs a new structure-based traversal (SBT) method to traverse
ASTs. To address the vocabulary challenge, we analyze the compo-
sition of identifiers and find out that an identifier usually consists
of multiple words, e.g. toString→ {to, string}. These words are used
to represent the functionality of the variables or methods.
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Figure 1: Framework of Our Approach

In this paper, we propose a tool DeepCommenter that is imple-
mented based on our Hybrid-DeepCom [11]. DeepCommenter is
in a form of an Integrated Development Environment (i.e., Intellij
IDEA) plug-in that is built upon a Client/Server architecture. The
most important reason for adopting such architecture is that devel-
opers just need to specify the code they want to generate comment
for without any additional operations. As a result, our tool will gen-
erate the corresponding comment automatically. Moreover, since
the model is deployed on the server, the tool does not require extra
memory or CPU resources for users.

To evaluate DeepCommenter, we compare the performance of
DeepCommenter with four baseline approaches on a corpus that
consists of 9,714 Java projects from GitHub. Two different met-
rics are used in the evaluation process and the results show that
DeepCommenter outperforms the state-of-the-art approaches by a
substantial margin.

2 APPROACH
2.1 Overall Framework
Figure 1 provides the overall framework of our model. In general,
our model consists of three stages: 1) Data processing. The Java
methods obtained from GitHub are parsed into parallel corpus. The
target comments are extracted from the corresponding Javadoc
of the Java methods. In order to learn the structural information,
the Java methods are converted to AST sequences before fed into
the model. 2) Model training. We use Tensorflow, which is an open
source deep learning framework, to build our models. 3) Online test-
ing. Both Information Retrieval (IR) metrics (e.g., precision, recall,
F-score and F-mean) and Machine Translation (MT) metrics (e.g.,
BLEU and METEOR) are used to evaluate our model.

2.2 Model Details
Our model is based on the Sequence-to-Sequence (Seq2Seq) archi-
tecture, which consists of two main parts, the encoder and the
decoder. The encoder takes the input sequence, trains on it and
passes the last state to the decoder part. The decoder receives the

last state from the encoder part and uses it as the initial state to gen-
erate output sequence. It is effective to generate an output sequence
from an input using Seq2Seq, and our model takes advantages of
it. However, since we need to get the structural information from
the AST, which is a different structure compared to code sequence,
we need two input sequences to be fed into the model. Hence two
encoders is required in the encoder part.

Encoders. Our model uses two encoders, code encoder and AST
encoder, to encode code sequences and AST sequences respectively.

Code Encoder. The code encoder is Gated Recurrent Unit (GRU)
[4] and learns the lexical information of Java method. To encode a
code sequence, the GRU unit transforms one token of the sequence
into a hidden state at each time step, and the result will be fed into
the attention layer.

AST Encoder. The other encoder is the AST Encoder. AST encoder
learns the structural information fromAST sequences. To transform
AST into sequence, we proposed a Structure-based Traversal (SBT)
method [11] to traverse AST. Similar to the code encoder, AST
encoder is another GRU and each unit transforms one token of the
sequence into a hidden state at each time step.

These two encoders learn different features from code sequences
and AST sequences. After that, these features are transformed into
a context vector. In addition, our model is armed with an attention
mechanism to fuse the lexical information and structural informa-
tion.

Attention. Attention mechanism is widely used in machine
translation and related fields. Different from the typical machine
translation problem, two encoders are adopted to learn different
information in our model. Hence the hidden states of the two en-
coders should be projected into a shared space to fuse the lexical
information with structural information, and the attention mecha-
nism computes the attention weights over the projections.

Decoder. The decoder takes the weighted vector generated by
the attention mechanism and its generated words as the input to
generate the target word sequentially. Beam search [13] strategy
and gradient descent optimization function are used to minimize
the objective function cross-entropy.
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3 IMPLEMENTATION
3.1 Data Collection
The data source of DeepCommenter is collected from GitHub Java
repositories in recent few years, and in order to ensure the quality
of the code and comments, only repositories with more than 10
stars are collected.

First, we select the Java methods with the corresponding Javadoc
in each repository, and use the first sentence in the Javadoc as the
target comment of the Java method, because the first sentence in
the comment usually explains the meaning of the method. Second,
we omit the getter, setter, constructor and the basic test methods
marked with @Test annotation; because the meaning of these meth-
ods are too simple, they may hinder the model from learning deeper
information of the code [10]. Third, we manually check the pro-
cessed samples and omit the overridden methods to reduce the
duplication. After the preprocessing of the dataset, we get 588,108
<method, comment> pairs. The whole dataset can be found in our
GitHub repository1.

3.2 Tool Implementation

Selected
Code

Formatted
Code

Code &
AST

Sequence

Pre-trained
Model

Generated
Comment

Client Module Server Module

Figure 2: Workflow of Our Plug-in

DeepCommenter is implemented in the form of an Intellij IDEA2

plug-in based on Client/Server architecture. The workflow of our
plug-in is presented in Figure 2. When developers select the code
that they want to generate comment for and press the Generate
Comment button in the Code menu, DeepCommenter displays a
progress bar and processes it in the background. In detail, the plug-
in will wrap the selected code into a JSON3 object, use Apache
HttpClient4 to send the formatted code to server and wait for re-
sponse. We deploy a lightweight web application framework Flask5
on the server to listen for client requests. After the server receives
the request, the code is converted to two input sequences (the code
sequence and AST sequence) to be fed into the model. The model
is preloaded, it generates comments immediately and sends back to
the client. After the client receives the response, it will insert the
comment above the selected code and the whole process is finished.

In practice, the user may not select the complete method but a
segment of the method, and incomplete methods may lead to the
problem that the model cannot obtain complete AST information
and code semantics. To avoid this problem, the plug-in will check
the code segment selected by the user. If the selected code segment
is not a complete code segment, it will automatically locate the

1https://github.com/xing-hu/EMSE-DeepCom
2https://www.jetbrains.com/idea/
3https://www.json.org/
4http://hc.apache.org/httpcomponents-client-ga/
5https://palletsprojects.com/p/flask/

beginning and end of the method, and send the complete method
to server for processing. In addition, the information carried by the
RNN may disappear as the length of the code segment increases,
which will result in poorly generated comments. This is a problem
currently difficult to overcome in code comment generation task.
Therefore, if the plug-in detects that the user selected more than k
lines of code, it will send a warning to the user. We empirically set
k to 50.

Moreover, to meet the efficiency requirement as a real time code
comment generation plug-in, we optimize the code base of the
previous work in the following way. Unlike the test process, in
which the model is loaded into memory every time it is executed,
the model is deployed on server and we only need to load it into
memory once. It saves time in loading the model into memory, and
reduces the memory pressure of the client.

3.3 Installation & User Interface

Figure 3: User Interface of the Plug-in

The plug-in adopts the Client/Server architecture, which means
that it is quite easy for users to install the plug-in without worrying
about any model deployment. Users only need to download the
plug-in from the website, open settings of Intellij IDEA, select the
Plugins tab, choose Install Plugin from Disk, and then restart Intellij
IDEA to activate the plug-in.

Figure 3 shows the user interface of our plug-in. The plug-in
follows the workflow in Figure 2 to generate comments. To use
the plug-in, users need to select the code they want to generate
comment for (➂), and press the Generate Comment button (➁) in
the Code menu (➀). DeepCommenter displays a progress bar and
processes the task in the background. The plug-in will insert the
generated comment (➃) above the code automatically. To make
the inserted comment look natural, the indentation of inserted
comment is made consistent with the code. Moreover, we provide
keyboard shortcuts "ctrl + alt + /" (Windows) and "command +
option + /" (MacOS) to make it easier for developers to use the
plug-in.

In addition, the core process of generating comments takes place
on the server, which means that it is easy for developers to develop
plug-in for other Integrated Development Environment (IDE), e.g.,
Eclipse6. Plug-in developer only needs to wrap the code selected
6https://www.eclipse.org
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by the user into a JSON object and send it to the server, receive
the response from the server and parse the response data in UTF-8
format, and insert the generated comment into the editor. This
design makes it convenient for plug-in developers to extend the
plug-in. For example, when the new model needs to use the fully
qualified name of the method name or the API call sequence of the
method, plug-in developer only needs to add the required fields in
the JSON object and parse the corresponding fields on the server
side.

4 EVALUATION
We compare our tool with four baseline approaches:

(1) CODE-NN: CODE-NN [12] is one of the state-of-the-art
methods for code comment generation and code summa-
rization. It generates code comment for code snippets from
end to end. It integrates code token embeddings and uses
RNN with attention mechanism to generate code comment.

(2) Seq2Seq model: The Seq2Seq model takes the source code
sequence as input, which means that Seq2Seq model only
takes the lexical information into consideration. The com-
ment generated by Seq2Seq model reflects the performance
of NMT techniques for code comment generation task.

(3) Attention based Seq2Seq model: The Seq2Seq model armed
with attention mechanism is able to disregard the noise and
focus on the relevant information.

(4) DeepCom with classical traversal method: DeepCom [10]
is the base version of Hybrid-DeepCom proposed in our
previous work. Compared to Hybrid-DeepCom, DeepCom
only uses structural information from the traversed AST
sequences and generates comment word by word.

The data set we used to evaluate our tool is introduced in section
3.1. Both Information Retrieval (IR) metrics and Machine Transla-
tion (MT) metrics are used to evaluate the model. The IR metrics
used include precision, recall, F-score and F-mean [5]. The MT
metrics used include BLEU [17] and METEOR [5].

The experimental results on IR metrics show that our tool out-
performs other approaches by a substantial margin. It illustrates the
importance of structural information in code comment generation
task. Our model combines the lexical and structural information
together, which helps generate more accurate and user-friendly
comments.

The MT metrics (BLEU and METEOR) are smoother compared
to IR metrics. The BLEU metrics include the Sentence-level BLEU
(S-BLEU) and the Corpus-level BLEU (C-BLEU). The experimental
results show that our tool achieves the best performance in all
three metrics. Our model is more capable of learning the structural
information compared to DeepCom using pre-order traversal. More
details of our evaluation results can be found in our journal paper
[11].

In addition, excessively high latency is beyond the tolerance of a
real-time code comment generation tool, so we conducted efficiency
tests on the plug-in. we evaluate the plug-in on Ubuntu 16.04 LTS
with 6-core Intel 3.60GHz CPU, four NVIDIA GTX 1080 GPU and
64GB RAM. The result shows that generating a comment takes an
average of 140 milliseconds.

5 RELATEDWORK
Previous work shows that comments can be generated given a
source code snippet [15, 16, 18]. Traditional approaches generate
comment manually or simply use the IR-based approach [7, 8].
Approaches requiring much manual input may not be practical to
be applied in real-world scenario. IR-based approach has two main
limitations: one is that when the methods and identifiers are poorly
named, they cannot extract the exact keywords used to identify
similar code snippets, and the other is that it only depends on the
similarity of the code snippets. Although the precision of IR-based
approaches is high, they cannot achieve high recall since the models
tend to generate short comment.

Recently, more and more researches use probabilistic models for
large-scale source code data sets. Hindle et al. proved that proba-
bilistic models can be used to model source code [9], and a series
of subsequent studies have developed probabilistic models for dif-
ferent software engineering tasks [6, 14, 20, 21]. For code comment
generation task, current probabilistic model-based methods often
use source code to generate comments directly, such as the RNN
model with attention mechanism (i.e., the CODE-NN approach
[11]). The experimental results also prove the effectiveness of the
probabilistic model for the code comment generation task.

Besides, code comment generation can also be seen as a variant of
NMT problem [2, 3, 10, 19]. The biggest difference between typical
NMT techniques and code comment generation is: NMT translates
a sentence of one natural language (e.g., English) to another natural
language (e.g. Chinese), and code comment generation translates
source code which is written in a programming language to a
piece of text in a natural language. Our tool is inspired by the
aforementioned studies, but differs in that we implement a tool in
the form of an Integrated Development Environment (i.e., Intellij
IDEA) plug-in.

6 CONCLUSION
We propose a code comment generation tool DeepCommenter that
treats the code comment generation task as a machine translation
problem. DeepCommenter is implemented in the form of an Inte-
grated Development Environment (i.e., Intellij IDEA) plug-in based
on Client/Server architecture. Its approach is a variant of Seq2Seq
model with attention mechanism, which learns lexical information
and structural information from code sequence and AST sequence
respectively to generate comments for Java methods. In the future,
we will improve the way the plug-in interacts with users, allowing
users to interact with the plug-in by accepting or rejecting the
generated comments. We will enhance DeepCommenter to support
more programming languages (e.g., Python, C++) and add domain-
specific customizations. We will explore more features of source
code to make the tool more robust and effective.
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