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Abstract—Background: Software defect models can help soft-
ware quality assurance teams to allocate testing or code review
resources. A variety of techniques have been used to build
defect prediction models, including supervised and unsupervised
methods. Recently, Yang et al. [1] surprisingly find that unsu-
pervised models can perform statistically significantly better than
supervised models in effort-aware change-level defect prediction.
However, little is known about relative performance of unsu-
pervised and supervised models for effort-aware file-level defect
prediction. Goal: Inspired by their work, we aim to investigate
whether a similar finding holds in effort-aware file-level defect
prediction. Method: We replicate Yang et al.’s study on PROMISE
dataset with totally ten projects. We compare the effectiveness of
unsupervised and supervised prediction models for effort-aware
file-level defect prediction. Results: We find that the conclusion of
Yang et al. [1] does not hold under within-project but holds under
cross-project setting for file-level defect prediction. In addition,
following the recommendations given by the best unsupervised
model, developers needs to inspect statistically significantly more
files than that of supervised models considering the same in-
spection effort (i.e., LOC). Conclusions: (a) Unsupervised models
do not perform statistically significantly better than state-of-art
supervised model under within-project setting, (b) Unsupervised
models can perform statistically significantly better than state-of-
art supervised model under cross-project setting, (c) We suggest
that not only LOC but also number of files needed to be
inspected should be considered when evaluating effort-aware file-
level defect prediction models.

Index Terms—Replication Study, Inspection Effort, Effort-
aware Defect Prediction

I. INTRODUCTION

Fixing defects is a vital activity during software mainte-

nance. It can cost up to 80% of software development budget

[2]. To help developers better manage defects, a number of

software engineering studies have proposed defect prediction

models. A defect prediction model can provide a list of likely

buggy software artifacts (e.g., modules or files) in an early

stage. As a result, software quality assurance (SQA) teams

can use the list to allocate resources effectively by focusing

on the likely buggy parts [3]–[7].

Researchers have proposed various defect prediction models

[6], [8]–[21]. Most of them are based on supervised learning

from labeled training data. However, the cost of collecting

training data is a barrier of adopting defect prediction in
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industry [22], [23]. For new projects or projects with limited

development history, there is often not enough defect infor-

mation for building a model. This is the main challenge of

supervised defect prediction. An alternative solution is the

cross-project defect prediction (CPDP) which uses labeled

training data from other projects [23]–[25]. However, the

main challenge of CPDP is the heterogeneity of projects; this

heterogeneity makes it hard to learn a model from a project

and use it for another [24], [26]–[28].

To address such challenge, unsupervised models can be

used [13], [24], [29]. The main advantage of unsupervised

defect prediction is that it does not require access to training

data. However, there is only a few studies in the literature

focusing on unsupervised defect prediction. One reason is

that unsupervised prediction models usually underperform

supervised ones in terms of prediction performance [24].

Both supervised and unsupervised prediction models will

provide a list of likely buggy code units which developers

can focus on during subsequent SQA activities. However,

due to limited resources for code inspection and testing, it

is expensive and impractical to inspect all potential defective

code units. Therefore, effort-aware defect prediction models

are proposed [30]–[33]. It aims to reduce the candidate set of

code units to inspect by ranking code units based on predicted

defect density. In this way, it could find more defects per unit

code inspection effort.

Recently, Yang et al. [1] surprisingly find that unsupervised

models can perform statistically significantly better than super-

vised models for effort-aware change-level defect prediction.

Fu and Menzies [34] and Huang et al. [35] revisit and refute

their findings for change-level defect prediction. However,

to the best of our knowledge, little is known about relative

performance of unsupervised and supervised models for effort-

aware file-level defect prediction. Therefore, to fill this gap, we

set out to revisit the findings of Yang et al. [1] for effort-aware

file-level defect prediction by conducting an empirical study

considering both within-project and cross-project validation

settings. The difference between change-level and file-level

defect prediction lies on the development phase when they are

employed. Change-level defect prediction is conducted when

each change is submitted. It aims to be a continuous activity of

quality control. File-level defect prediction is usually conduct-

2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

978-1-5090-4039-1/17 $31.00 © 2017 IEEE

DOI 10.1109/ESEM.2017.48

344



ed before a product release. It aims to be a quality control step

before a release. They can complement each other to improve

the quality of the upcoming release.

In summary, the main contributions of this paper are as

follows:

• We conduct an empirical study of effort-aware file-level

defect prediction by comparing various supervised and

unsupervised defect prediction models on ten public

projects. In addition, we consider both within-project and

cross-project prediction settings.

• Our study highlights that the conclusion of Yang et al.

[1] does not hold under within-project but holds under

cross-project setting for file-level defect prediction.

• We investigate number of files needed to be inspected

using unsupervised and supervised models considering

the same number of lines of code to inspect. The results

show that following recommendations given by the best

unsupervised model developers need to inspect more files

given the same amount of lines of code (LOC). This

finding suggests that not only LOC but also number of

files needed to be inspected should be considered as effort

for evaluating effort-aware models.

Paper Organization. The rest of this paper is structured as

follows. Section 2 presents the background and related work

of our study. Section 3 presents the different prediction models

that are investigated in this work. In Section 4, we describe

the study setup. Section 5 presents experiment results and their

analysis. In Section 6, we summarize the main threats of our

study. At last, in Section 7, we conclude and present future

plans.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce supervised defect predic-

tion models. Then, we briefly review the existing work on

unsupervised defect prediction models. Finally, we describe

existing work on effort-aware defect prediction.

A. Supervised Defect Prediction

Supervised defect prediction models are built on the his-

torical labelled source code files (i.e., labeled as either buggy

or clean). Various software metrics are extracted from source

code files, e.g., lines of code, number of methods, number

of attributes. The defect information of labeled files is usually

collected through various data sources, such as version control

system and issue tracking system. Various machine learning

techniques can be used to build supervised defect prediction

models, e.g., Logistic regression, Decision tree, Naive Bayes

and Random Forest [8], [26], [36], [37].

There are two kinds of prediction settings in supervised

defect prediction, namely within-project defect prediction (W-

PDP) and cross-project defect prediction (CPDP). In WPDP,

the whole process is performed within a single project. The

model is built by learning from labeled instances of the project.

And the model is adopted to predict the labels of unknown

files within the project. The limitation of WPDP is that it is

difficult to build accurate models on new projects or projects

with limited historical data [38]. In addition, collecting defect

information involves substantial effort which may prevent its

adoption in industry [22], [23]. In CPDP, the model is built

on the labeled instances from one or several projects (i.e.,

source projects). And the model is applied to predict the labels

of unknown files of another project (i.e., target project). The

major limitation of CPDP is the distribution of defects in the

source projects and target projects are different, which may

lead to low accuracy [24], [27].

B. Unsupervised Defect Prediction

Despite the promising results achieved by supervised mod-

els, the expensive effort cost of collecting defect data is

still a barrier for applying it in practice. The advantage of

unsupervised model is that it does not need any labelled data.

A typical process of unsupervised defect prediction consists

of two steps: first, files are grouped into k clusters (usually

two clusters); second, each cluster is labeled as buggy or clean

[24]. There exists a limited number of studies on unsupervised

defect prediction [13], [24], [29], [38], [39]. One reason is

that the unsupervised models usually do not perform as well

as supervised ones [24].

An early attempt of unsupervised defect prediction is made

by Zhong et al. [29]. They propose to apply k-means and

neural-gas clustering techniques [40] in defect prediction.

They find that neural-gas is better than k-means. One issue

of their work is that the choice of the number of clusters and

the labeling step which requires manual effort, and it is hard to

determine a good value in practice. Bishnu and Bhattacherjee

[39] propose to apply quad trees to initialize cluster centers in

k-means based unsupervised defect prediction. Yang et al. [13]

propose to adopt an affinity propagation clustering algorithm

to predict defective files. Nam and Kim [38] propose to use

thresholds of selected metrics to label the clusters. Zhang et

al. [24] adopt spectral clustering to build a connectivity-based

unsupervised prediction model.

C. Effort-Aware Defect Prediction

The objective of defect prediction is to support software

quality assurance (SQA) activities, such as unit testing and

code review. Test managers and quality managers allocate

more efforts to test or review software entities which are

predicted as buggy. However, due to limitation of SQA re-

sources, it is impractical to inspect all files that are predicted

as buggy. In practice, it is important to consider the effort of

applying SQA activities after defect prediction. Thus, effort-

aware defect prediction models have been proposed [30]–[33].

Many of the traditional classification algorithms (e.g., logistic

regression, decision trees and support vector machines) which

perform well in terms of traditional performance measures

are found to perform poorly when assessed considering effort

involved in performing inspection activities [33], [41].

Mende et al. [31] include the notion of effort into a defect

prediction model. Kamei et al. [30] revisit whether common
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findings in traditional defect prediction still hold for effort-

aware prediction. Koru et al. [42], [43] suggest that smaller

modules should be inspected with higher priority, since more

defects would be detected per unit code inspection effort.

Based on this finding, Menzies et al. [44] name the finding of

Koru et al. as “ManualUp” model. As a result, they find that

the ManualUp model performs well in effort-aware prediction

performance. Shihab et al. [32] investigate the different choices

of measures (e.g., LOC) used as proxy of effort in defect

prediction. Mezouar et al. [33] compare local and global effort-

aware defect prediction models.

Recently, Yang et al. [1] find unsupervised models can per-

form better than supervised models for effort-aware change-

level defect prediction. Fu and Menzies [34] and Huang et al.

[35] revisit and refute their findings for change-level defect

prediction. Although both supervised modes [30], [31], [33]

and unsupervised models [43], [44] have been investigated for

effort-aware file-level defect prediction, little is known about

their relative performance using the same dataset. To fill this

gap, we perform an empirical study by replicating the work

of Yang et al. [1]. The main difference between this work

and Yang et al’s work [1], Fu and Menzies’s work [34] and

Huang et al.’s work [35] is: they focus on change-level defect

prediction and we focus on file-level defect prediction.

III. FILE-LEVEL DEFECT PREDICTION METHODS

In this section, we introduce various effort-aware file-level

defect prediction methods which are investigated in this work.

We first provide detail description of unsupervised models.

Subsequently, we describe a collection of state-of-art super-

vised models.

A. Unsupervised Models

The objective of a defect prediction model is to determine

risky code for further software quality assurance activities. In

terms of the model output, there are two kinds of outcomes.

One is a classification outcome (i.e., classify each entity as

defective or clean). The other is a ranking result based on

defect-prone risk value, which can provide a list of entities

(i.e., files or modules) ordered by the risk. The latter is more

suitable for defect prediction purpose [31], [45], since the SQA

team can focus on the highly-ranked files (i.e., with higher

defect-prone risk values) for further SQA activities (e.g., code

review and unit tests).

In our study, we use the unsupervised models proposed by

Yang et al. [1]. The intuition of the unsupervised models is

based on the finding by Koru et al. [42], [43]: they found that

“smaller modules are proportionally more defect-prone and

should be inspected first, as more defects would be detected

per unit code inspection effort”. The unsupervised models use

software metrics; we list them in Table I. Following Yang et

al.’s study [1], we exclude lines of code (which is an effort

proxy metric) for building unsupervised models. In modeling

step, for each metric, each unsupervised model is built by

ranking files in descending order of the reciprocal of the metric

value. Formally, let R(i) represents the risk value of file i, and

M(i) represents the metric value of file i. The relationship

between the risk and metric value is given by: R(i) = 1/M(i).
In this way, files with smaller product metric values will be

ranked higher. In the latter part of the paper, we use the term

unsupervised models to refer to Yang et al.’s unsupervised

models presented above.

B. Supervised Models

To compare effectiveness between unsupervised and su-

pervised models, we investigate a collection of state-of-art

supervised techniques. In detail, six families with a total of 31

techniques are used in our work. These supervised models are

selected due to the following reasons. First, these supervised

models are commonly used in defect prediction studies [8],

[36], [37], [46], [47]. Second, all of them are investigated in

Yang et al.’s work [1], and most of them (except Random

Forest) are revisited in Ghotra et al.’s work [36].

Table II summaries the 31 supervised models, which are

grouped into six families, namely Function, Lazy, Rule, Bayes,

Tree and Ensemble. In the Function family, we use regression

models, neural networks and support vector machine, includ-

ing EALR [48] (i.e., Effort-Aware Linear Regression), Simple

Logistic (SL), Radial Basis Functions Network (RBFNet), and

Sequential Minimal Optimization (SMO). The Lazy family

represents lazy learning methods, and we use the K-Nearest

Neighbour (IBk) method. The Rule family represents models

based on rules, including propositional rule (JRip) and ripple

down rules (Ridor). Bayes family represents probability-based

models, and we investigate the most popular one, namely

Naive Bayes (NB). The Tree family represents decision tree

based methods, including J48, Logistic Model Tree (LMT) and

Random Forest (RF). In the last family, we have four ensemble

learning methods: Bagging, Adaboost, Rotation Forest and

Rotation Subspace. Different from other models, ensemble

learning models are built with multiple base classifiers. These

supervised models take as input some parameters. We use the

same parameter settings employed in Yang et al.’s work [1].

IV. STUDY SETUP

In this section, we introduce the experimental setup. First,

we provide descriptions of datasets used in our study. Second,

we present three research questions that we would like to

investigate. Third, we introduce validation methods, evaluation

measures, and statistical tests.

A. Dataset

In this work, we use a publicly available dataset with a total

of ten projects in PROMISE [49]. These projects have been

widely used in defect prediction studies [24], [33]. Table III

shows descriptive statistics of the dataset.

B. Research Questions

In this paper, we are interested to investigate the following

three research questions:

• RQ1: How well can unsupervised models perform as

compared to supervised ones under within-project set-

ting?
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TABLE I: List of metrics

Category Product Metric

Complexity

Lines of Code (LOC)
Weighted Methods per Class (WMC)
Number of Public Methods (NPM)
Average Method Complexity (AMC)
Max McCabe’s Cyclomatic Complexity (Max cc)
Avg McCabe’s Cyclomatic Complexity (Avg cc)
Measure of Aggregation (MOA)

Coupling

Coupling between object classes (CBO)
Response of a Class (RFC)
Afferent Couplings (CA)
Efferent Couplings (CE)
Inheritance Coupling (IC)
Coupling Between Methods (CBM)

Cohesion
Lack of cohesion in methods (LCOM)
Lack of cohesion in methods (LCOM3)
Cohesion Among Methods of Class (CAM)

Abstraction
Depth of Inheritance Tree (DIT)
Number Of Children (NOC)
Measure of Functional Abstraction (MFA)

Encapsulation Data Access Metric (DAM)

TABLE II: Summary of supervised models

Family Model Abbreviation

Function

Linear Regression EALR
Simple Logistic SL
Radial basis
functions network

RBFNet

Sequential Minimal
Optimization

SMO

Lazy K-Nearest
Neighbour

IBk

Rule
Propositional rule JRip
Ripple down rules Ridor

Bayes Naive Bayes NB
Tree J48 J48

Ensemble

Logistic Model
Tree

LMT

Random Forest RF
Bagging BG+LMT, BG+NB, BG+SL,

BG+SMO, and BG+J48
Adaboost AB+LMT, AB+NB, AB+SL,

AB+SMO, and AB+J48
Rotation Forest RF+LMT, RF+NB, RF+SL,

RF+SMO, and RF+J48
Random subspace RS+LMT, RS+NB, RS+SL,

RS+SMO, and RS+J48

TABLE III: Descriptive statistics of our dataset

Dataset Project #Files #Defects %Defects

PROMISE

Ant v1.7 745 166 22.3%
Camel v1.6 965 188 19.5%

Ivy v1.4 241 16 6.6%
Jedit v4.0 306 75 24.5%
Log4j v1.0 135 34 25.2%

Velocity v1.6 229 78 34.1%
POI v2.0 314 37 11.8%

Tomcat v6.0 858 77 9.0%
Xalan v2.4 723 110 15.2%
Xerces v1.3 453 69 15.2%

• RQ2: How well can unsupervised models perform as

compared to supervised ones under cross-project setting?

• RQ3: How many files need to be inspected using un-

supervised and supervised models considering the same

amount of LOC to inspect?

Fig. 1: Overview of validation methods

RQ1 and RQ2 are designed to compare the effectiveness of

unsupervised and supervised models in terms of two different

prediction settings. Although unsupervised effort-aware file-

level models have been proposed, little is known about the

answers of these two research questions; no prior work have

compared the two families of techniques using the same

dataset in effort-aware file-level defect prediction. This work

will perform an in-depth empirical study to answer the two

questions. In addition, the objective of the effort-aware model

is to find more defects by using less inspection cost (measured

in terms of LOC inspected). However, existing approaches

ignore number of files needed to be inspected. Inspecting many

files may cost more due to context switching involved. RQ3

is designed to investigate the number of files needed to be

inspected in unsupervised and supervised models considering

the same amount of LOC to inspect.

C. Settings Considered

To compare the effectiveness between unsupervised and

supervised methods, we consider two settings: within-project

(in RQ1) and cross-project (in RQ2) validation as Figure 1

shows.

For within-project validation, we use 10 times 10-fold cross-

validation. In detail, we repeat each experiment 10 times

within a project. In each cross-validation, we randomly divide

data from each project into 10 sub-samples of approximately

equal size, each sub-sample is used once as the testing data

and the remaining data is used for training. In this way,

we obtain 100 effectiveness values in each project for each

supervised model. For each unsupervised model, we also apply

the 10 times 10-fold cross-validation setting. This enables

unsupervised models use the same testing data each time to

make a fair comparison.

For cross-project validation, we build a supervised model by

training on one project (source project) and testing on another

project (target project). For a dataset with n projects, there

will be n ∗ (n− 1) 〈source, target〉 combinations. In addition,

in order to perform a fair comparison, when evaluating each

unsupervised model against a supervised model, we keep the

target project identical with the supervised model in each step

of the comparison process.

D. Evaluation Measures

Following prior studies [31], [33], we use LOC as proxy

measure of effort (aka. cost) involved in inspecting a file.
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Fig. 2: Illustration of the LOC-based Alberg diagram

Two typical effort-aware evaluation measures are used in our

work, namely ACC and Popt [1], [33], [48]. ACC denotes the

proportion of defective files identified when developers inspect

the top ranked files until 20% of the total LOC is inspected.

Popt is the normalized version of effort-aware performance

indicator originally proposed by Mende and Koschke [31].

In detail, Popt is based on the area under the effort curve

in an Alberg diagram [1]. Figure 2 shows an example of

an LOC-based Alberg diagram [1]. There are three curves

corresponding to a target, prediction model m, the “optimal”

model and the “worst” model. The opt represents the term

“optimal”. Using the optimal model, all the files are ranked in

decreasing actual defect density; let Area(optimal) represents

the area under the optimal curve. Using the predicted model,

all the files are ranked in order of predicted risk value; let

Area(m) represents the area under the predicted curve. Using

the worst model, all the files are ranked in ascending order of

its defect density; let Area(worst) represents the area under

the worst curve. Following [1], [48], Popt(m) is computed as

follows:

Popt(m) = 1− Area(optimal)−Area(m)

Area(optimal)−Area(worst)
(1)

E. Statistical Methods

When comparing supervised and unsupervised models, we

use two kinds of statistical tests to examine whether the

models’ effectiveness are significantly different. To examine

the performance difference in view of the global ranking of

all the models, we use the Scott-Knott test. To examine the

performance difference in view of each comparison between

unsupervised model and supervised model, we use the Wilcox-

on signed-rank test. We briefly introduce the two tests in this

section.

Following prior studies [1], [36], we use Scott-Knott test

[50] to group all the models into statistically distinct ranks

in both RQ1 and RQ2. This test is used to examine whether

some models outperform others and create a global ranking

of models. In detail, Scott-Knott test performs the grouping

process in a recursive way. At first, Scott-Knott test uses

hierarchical cluster analysis to partition all the models into

two ranks based on the mean performance. After that, if the

divided ranks are significantly different, then Scott-Knott test

recursively executes again within each rank to further divide

the ranks. In this way, the test will terminate when ranks can

no longer be divided into statistically distinct ranks.

We use Wilcoxon signed-rank test to examine whether the

performance difference between two models are statistically

significant in RQ1 and RQ2. We also use the Benjamini-

Hochberg (BH) procedure to adjust p-values since we perform

multiple comparisons [51]. After that, if the test shows a

significant difference, we compute Cliff’s delta which is a

non-parametric effect size measure to examine whether the

magnitude of the difference is substantial or not [1], [52].

Based on the value of delta, the difference can be considered

trivial (|δ| < 0.147), small (0.147 � |δ| < 0.33), moderate

(0.33 � |δ| < 0.474), or large (� 0.474) [1], [52].

V. EXPERIMENTAL RESULTS

In this section, we present empirical results and their

implications for the three research questions.

A. RQ1: Unsupervised vs. Supervised (Within Project)

Visualizations. Following the visualization technique used in

Yang et al.’s work [1], we use box-plots with different colors

to present the distribution difference of effectiveness values

between unsupervised and supervised models. Each box-plot

presents the median (the horizontal line within the box), the

25th percentile (the lower side of the box), and the 75th

percentile (the upper side of the box). In order to show the

statistical difference between supervised models and unsuper-

vised models, the box-plots consists of three colors, namely

blue, red and black. In detail, we set the best supervised model

(in terms of the median value) as the baseline and we use a

horizontal dotted line to represent the median performance of

the best supervised model. The different colors then carry the

following meanings:

A blue color box-plot represents that the corresponding

model outperforms the best supervised model with a statistical

significance according to the Wilcoxon signed-rank test where

the Benjamini-Hochberg (BH) corrected p-value is less than

0.05. Additionally, the magnitude of the performance differ-

ence between the two models is not trivial according to Cliff’s

delta, i.e., |δ| � 0.147.

A red color box-plot represents that the corresponding mod-

el performs significantly worse than the best supervised model

according to the Wilcoxon signed-rank test. Additionally, the

magnitude of the performance difference between the two

models is not trivial according to Cliff’s delta.

A black color box-plot represents that the difference be-

tween the corresponding model and the best supervised model

is not significant or the magnitude of the difference is trivial

according to Cliff’s delta, i.e., |δ| < 0.147.

We also draw two diagrams presenting results of running

Scott-Knott tests for Popt and ACC respectively. Each dia-

gram shows global ranking of models across projects in terms

of their Popt and ACC scores respectively.
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(a) ACC results

(b) Popt results

(c) Scott-Knott test results for ACC

(d) Scott-Knott test results for Popt

Fig. 3: Performance comparison under within-project setting

Results. Figure 3 shows the various visualizations highlighting

the overall results of PROMISE dataset considering 10 times

10-fold cross-validation. We draw two box plots for ACC
and Popt respectively as Figure 3(a) and 3(b). In addition, we

draw the Scott-Knott test results for ACC and Popt as Figure

3(c) and 3(d). In Figure 3(c) and (d), the y-axis represents the

average performance. The blue labels indicate unsupervised

models, while the black labels indicate supervised ones. The

dotted lines represent groups of equivalent models as output

by the Scott-Knott test.

From Figure 3, we observe the following findings: first, the

best supervised model is EALR in terms of both ACC and

Popt. It outperforms the other supervised models significantly.

Second, there is no unsupervised model that outperforms

EALR significantly, as there is no blue box. In addition, when

compared with EALR, three unsupervised models achieve sim-

ilar performance in terms of ACC, while four unsupervised

models achieve similar performance in terms of Popt. Third,

according to the Scott-Knott test, EALR is among members

of the first group in terms of both ACC and Popt.

Table IV lists the median ACC and Popt for the best

supervised model (i.e., EALR) and the best two unsupervised

models (i.e., AMC and RFC) for each project. We use “
√

”

TABLE IV: Within-project validation results for each project:

best supervised model vs. best two unsupervised models

Project ACC Popt
EALR AMC RFC EALR AMC RFC

Ant 0.211 0.235
√

0.205 0.541 0.550 0.556
Camel 0.462 0.400× 0.500

√
0.728 0.666× 0.740

√
Ivy 0.250 0.000 0.000 0.475 0.482 0.570

√
Jedit 0.286 0.444

√
0.369

√
0.584 0.653

√
0.671

√
Log4j 0.333 0.414 0.250× 0.638 0.668 0.535×

Velocity 0.500 0.500 0.500 0.750 0.755
√

0.746
POI 0.333 0.250× 0.354 0.569 0.536 0.611

Tomcat 0.250 0.286 0.222× 0.551 0.581
√

0.524×
Xalan 0.304 0.308 0.250× 0.614 0.619 0.599
Xerces 0.477 0.600

√
0.586

√
0.711 0.775

√
0.765

√
AVG 0.341 0.344 0.324 0.616 0.629 0.632

W/T/L 3/5/2 3/4/3 4/5/1 4/4/2

and “×” to indicate whether the unsupervised model performs

significantly “better” and “worse” than the best supervised

model according to the Wilcoxon’s signed rank test (after

Benjamini-Hochberg correction) respectively. AVG represents

the average performance over the ten projects. The row

“W/T/L” represents the number of projects for which the

unsupervised model performs better, equally well or worse

than the best supervised model. In addition, if there is a

significant difference, a “light gray”, “gray”, “deep gray” and
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(a) ACC results

(b) Popt results

(c) Scott-Knott test results for ACC

(d) Scott-Knott test results for Popt

Fig. 4: Performance comparison under cross-project setting

“yellow” background indicate “trival”, “small”, “moderate”

and “large” magnitude of difference according to Cliff’s delta

respectively.

From Table IV, we have the following findings: first, there

is no significant difference in terms of AVG between the best

supervised model and two unsupervised models. Second, in

most projects, there is no significant difference between the

best supervised model and two unsupervised models. In some

projects, the best unsupervised model significantly outperform-

s the best supervised model (e.g., 3 projects in AMC and RFC

in terms of ACC). Also, the best supervised model can also

significantly outperform the best two unsupervised models in

some projects (e.g., 2 projects in AMC and 3 projects in RFC

in terms of ACC). Third, considering the significant cases, we

only observe two moderate difference and no large difference.

Most of the magnitudes of the differences (20/22) are “trival”

or “small” according to the Cliff’s delta .

Implication. The above findings suggest that the conclusion of

Yang et al.’s study [1] does not hold under within-project for

effort-aware file-level defect prediction. Namely, unsupervised

models do not perform statistically significantly better than

state-of-art supervised model under within-project for effort-

aware file-level defect prediction.

Unsupervised models do not perform statistically signifi-
cantly better than state-of-art supervised model for effort-
aware file-level defect prediction, considering within-project
evaluation setting.

B. RQ2: Unsupervised vs. Supervised (Cross Project)

Results. Figure 4 presents the cross-project validation results.

Following RQ1, we use box-plot to visualize the results. Since

there are ten projects in our experiment, there are 10 ∗ 9 = 90
〈source,target〉 combinations for each prediction model. As a

result, each box-plot has 90 effectiveness values.

From Figure 4, we have the following findings: first, the

best supervised model is EALR in terms of both ACC and

Popt. Second, in terms of ACC, there are two unsupervised

models (i.e., RFC and AMC) which significantly outperform

the best supervised model EALR. In terms of Popt, there are

three unsupervised models (i.e., WMC, RFC and AMC) which

significantly outperform the best supervised model. Third,

according to the Scott-Knott test results, the models in the

first group are unsupervised models and the best supervised

model EALR is among members of the second group in terms

of both ACC and Popt.
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(a) Proportion of files to be inspected

(b) Scott-Knott test for proportion of files to be inspected

Fig. 5: Proportion of files to be inspected under within-project setting

(a) Proportion of files to be inspected

(b) Scott-Knott test for proportion of files to be inspected

Fig. 6: Proportion of files to be inspected under cross-project setting

Implication. The above findings suggest that the conclusion

of Yang et al. [1] holds under cross-project for effort-aware

file-level defect prediction. Namely, unsupervised models can

perform statistically significantly better than state-of-art su-

pervised model under cross-project for effort-aware file-level

defect prediction.

Unsupervised models can perform statistically significantly
better than state-of-art supervised model for effort-aware
file-level defect prediction, considering cross-project evalua-
tion setting.

C. RQ3: Analysis on the number of files for inspection

Results. We obtain the proportion of files needed to be

inspected when computing the ACC value (i.e., when 20% of

total LOC is inspected). Figure 5 and 6 present the proportion

of files needed to be inspected using different models under

within-project and cross-project setting respectively.

From Figure 5 and 6, we have the following findings: first,

the proportion of files to inspect for EALR is significantly

higher than the other supervised models. Second, the pro-

portion of files to inspect for the best three unsupervised

models (i.e., AMC, RFC and WMC) are significantly higher

than the best supervised model (i.e., EALR) under within-

project and cross-project setting, as the corresponding boxes

are blue. Third, according to the Scott-Knott test result, the

first group and second group are unsupervised models, the

EALR is located in the third and fourth group under within-

project and cross-project setting respectively.

Moreover, Table V lists the median proportion of files to

inspect in each project for the best supervised model and the

best two unsupervised models under within-project validation.

From Table V, we have the following findings: first, the

average proportion of files to inspect for the unsupervised

models AMC and RFC exceed that of EALR by 14.3% and

24.1% respectively. Second, the proportion of files to inspect

for AMC is significantly higher than that of EALR in four

projects, and there is no significant difference in the remaining

six projects according to the Wilcoxon’s signed-rank test (after

Benjamini-Hochberg correction). Meanwhile, the proportion

of files to inspect for RFC is significantly higher than that

of EALR in nine projects. Third, considering the significant

cases, twelve of them have a large magnitude of difference

according to the Cliff’s delta.

Implication. The above findings suggest that following rec-
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TABLE V: Proportion of files needed to be inspected for each

project under within-project validation

Project EALR AMC RFC

Ant 0.561 0.547 0.607
√

Camel 0.518 0.521 0.653
√

Ivy 0.625 0.653 0.729
√

Jedit 0.524 0.525 0.722
√

Log4j 0.407 0.555
√

0.593
√

Velocity 0.609 0.609 0.696

POI 0.422 0.572
√

0.581
√

Tomcat 0.535 0.628
√

0.680
√

Xalan 0.521 0.558 0.639
√

Xerces 0.511 0.813
√

0.767
√

AVG 0.523 0.598 0.667

W/T/L 0/6/4 0/1/9

ommendations given by the best unsupervised model, de-

velopers need to inspect statistically significantly more files

than supervised models when the same amount of effort

(measured in terms of LOC) is spent. In addition, although

EALR outperforms other supervised models considering ACC
and Popt, it also needs to inspect more files than other

supervised models. This highlights a problem of evaluating

the performance of effort-aware models by only using LOC

as the effort measure. The reason is that the effort needed for

inspecting the same number of LOC spread across different

number of files are likely to differ due to context switching

cost. If a developer needs to inspect multiple files, it requires

him/her to context switch between the files. The context

switching cost can be large especially when a large number

of files need to be inspected. Thus, we suggest that not only

LOC but also number of files needed to be inspected should

be considered when evaluating effort-aware file-level defect

prediction models.

By following recommendations given by the best unsuper-
vised model, developers need to inspect more files given
the same amount of lines of code (LOC). Not only LOC
but also number of files needed to be inspected should
be considered when evaluating effort-aware file-level defect
prediction models.

VI. THREATS TO VALIDITY

In this section, we discuss potential aspects which may

threat the validity of our study.

Internal Validity. One main threat to internal validity of our

study is the setting of the cut-off value when calculating ACC.

We set the cut-off value as 0.2 by following prior works [1],

[48]. To reduce this potential threat, we use an additional

performance measure (i.e., Popt) and analyze the number of

files to be inspected to evaluate the models.

External Validity. Threats to external validity relate to gen-

eralizability of our results. First, our study uses lines of

code as measure of effort by following similar prior work

[31], [33]. However, one work [32] found that the complexity

measures also have a strong correlation with effort. Using other

measures of efforts such as McCabe cyclomatic complexity to

replicate our study can be useful in generalizing our findings.

Second, projects investigated in our experiments all come from

PROMISE public projects repository [49]. To reduce this threat

further, as a future work, it will be interesting to replicate our

study on more datasets. We have provided the necessary details

and scripts that will make it easy for others to replicate our

study.

VII. CONCLUSION AND FUTURE WORK

Recently, Yang et al. [1] found that unsupervised models can

perform significantly better than supervised models for effort-

aware change-level defect prediction. In this paper, we seek to

revisit the finding for effort-aware file-level defect prediction.

In detail, we perform an in-depth empirical replication study

to investigate whether their findings hold for file-level defect

prediction.

In summary, our experimental results from ten public

projects show that: (1) the conclusion of Yang et al. [1] does

not hold under within-project for effort-aware file-level defect

prediction. Namely, unsupervised models do not perform sta-

tistically significantly better than state-of-art supervised model

under within-project setting. (2) The conclusion of Yang et

al. [1] holds under cross-project for effort-aware file-level

defect prediction. Namely, unsupervised models can perform

statistically significantly better than state-of-art supervised

model under cross-project setting. (3) We investigate number

of files needed to be inspected given the same amount of

LOC. The experimental results show that the proportion of

files needed to be inspected in the best unsupervised model are

significantly higher than that of supervised models when in-

specting same amount of LOC. Meanwhile, the best supervised

model EALR also has a significantly higher proportion than

that of other supervised models. This finding raises the issue

of only regarding LOC as the effort measure when evaluating

effort-aware models. We suggest that not only LOC but also

number of files needed to be inspected should be considered

for evaluating effort-aware file-level defect prediction models.

In the future, in order to investigate the generalization

of our findings further, we plan to replicate this work on

more datasets, including both open-source and closed-source

software projects. In addition, we plan to consider both LOC

and number of files needed to be inspected in effort-aware

defect prediction models.

Replication package of our study can be downloaded from:

https://bitbucket.org/mengyancqu/esem17defectprediction
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