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Abstract
Software crashes occur when the software program is executed wrongly or interrupted com-
pulsively, which negatively impacts on user experience. Since the stack traces offer the
exception-related information about software crashes, researchers used features collected
from the stack trace to automatically identify whether the fault residence where the crash
occurred is in the stack trace, aiming at accelerating the process of crash localization. A
recent work conducted the first large-scale empirical study, which investigated the impact
of feature selection methods on the performance of classification models for this task. How-
ever, the crash data have the intrinsic class imbalance characteristic, i.e., there exists a large
difference between the number of crash instances inside and outside the stack trace, which is
ignored by the previous work. To fill this gap, in this work, we conduct a large-scale empir-
ical study to explore how different imbalanced learning techniques impact the performance
of crashing fault residence prediction models on a benchmark dataset comprising seven
software projects with four evaluation indicators. Our experimental results demonstrate that
two imbalanced variants of the bagging classifier perform better than other compared tech-
niques in both the normal and cross-project settings, and can constantly generate excellent
prediction performance even though the imbalance level changes.

Keywords Crash localization · Stack trace · Imbalanced learning · Empirical study

1 Introduction

The flourishment of the Internet has accelerated the process of human development. In
particular, the emergence of software products pushes this process into a new era. As
the irreplaceable part of people’s everyday life, software products ineluctably bring faults
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during the development with many uncertain factors (Mathur 2013). This kind of awful con-
ditions can lead to negative impacts on user experience. When the faults occur, the software
program will be executed incorrectly and even forced to break off, which is also called soft-
ware crashes. Once software crashes, the built-in monitoring system automatically records
related information, such as the stack trace, which can be used to analyze where the crashes
come from Dhaliwal et al. (2011). Ascertaining the residence of faults giving rise to the
crash (short for crashing faults) can accelerate programmers to pay attention to the corre-
sponding source code and fix them emphatically, which becomes an important activity for
software quality assurance (Xu et al. 2020).

To locate the residence of crashing faults more quickly during the development and
maintenance process, researchers took advantages of the stack trace information. These
information have been shown to be favourable for programmers when debugging (Schroter
et al. 2010). The stack trace offers the exception-related information when the software
crash happens, including the exception type, the root where this exception thrown, and the
trajectory of function invocation. Each stack trace comprises multiple frames in which the
exception type is recorded in the first frame (i.e., top frame) and the function calls are traced
until the last frame (i.e., bottom frame). As a previous empirical study indicated that most
of the crashing faults reside in the stack traces (Li et al. 2018), the objective of locating the
residence of crashing faults lies in predicting whether the crashing faults reside in the stack
trace or not. This can be treated as a traditional binary classification task that is typically
modeled by the classification techniques in machine learning. If the crashing fault resides
in the stack trace, practitioners just need to concentrate on the corresponding code snippets
that the stack trace points, which can greatly economize on programmers’ efforts. Other-
wise, programmers need to spend a mass of efforts on inspecting the function invocation
tracks involving a crowd of lines of code, which is inefficient within the limited resource
during the maintenance period.

A recent study (Gu et al. 2019) released a benchmark dataset to assist the crashing faults
residence prediction task. Specifically, they simulated the real-world crashes by virtue of the
programmutation tool and characterized each crash instance with 89 features extracted from
the stack trace and faulty code. Also, they labeled each crash instance based on the following
matching rules: if the crashing fault residence exactly matches with the information piece
(i.e., the class name, the method name, and the code line number) in one of the frame in
the stack trace, this crash instance is deemed to be inside the stack trace; otherwise, outside
the stack trace (Gu et al. 2019). In addition, they proposed a simple model to analyze the
collected dataset. Following their work, researchers developed many approaches to improve
the performance for this task from different perspectives, such as feature selection (Zhao
et al. 2021a), metric learning (Xu et al. 2020), and even the extension to the cross-project
scenario (Xu et al. 2019b). Zhao et al. (2021b) comprehensively analyze the impact of 24
feature selection methods on the performance of 21 classification models for the crashing
faults residence prediction task. This work mainly focused on exploring how the feature
selection methods impact the performance of crashing faults residence prediction models
from two aspects, i.e., classification model level and project level. However, the crash data
are always inherently imbalanced, i.e., the crash instances in the stack trace (i.e., minority
instances) are fewer than those outside the stack trace (i.e., majority instances) (Gu et al.
2019), which is ignored by their work. The class imbalance issues are existing in many
software engineering tasks, such as software defect prediction (Xu et al. 2019a; Kamei et al.
2016; Li et al. 2020) and technical debt detection (Ren et al. 2019; Wang et al. 2020), which
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negatively impact the performance of models. Thus, how to address the class imbalance
issues is always a hot research topic (Tantithamthavorn et al. 2018; Song et al. 2018).

1.1 Motivation

A common phenomenon encountered in real world is that crash residence data comprises
only a few positive instances (i.e., inside the stack trace) and a large number of nega-
tive ones (i.e., outside the stack trace), that is the class imbalance issue. For example, the
dataset used in this work holds different ratios between positive and negative instances (as
shown in Section 3.1). When building predictive models from imbalanced data, classical
techniques assume the balanced class distributions or equal misclassification costs (He and
Garcia 2009; Song et al. 2018) and thus obtain poor performance in identifying rare classes.
Although plenty of imbalanced learning techniques have been developed to enhance the
classification performance, the impact of different imbalance techniques on crashing fault
residence prediction has never been investigated.

Thus, we believe the uncertainty of employing imbalanced learning techniques for crash-
ing fault residence prediction task lie in the following motivations. First, the choice of
various imbalanced learning techniques for this task is not well explored and understood.
Second, different imbalance levels of crash data and their influences of distinct predic-
tive performance are undiscovered. Third, there is a lack of a unified experimental process
for comparing the predictive results of these techniques strictly. Fourth, there exist biases
among the used performance evaluation indicators.

As a result, we systematically explore the research questions below:

– RQ1:What are the impacts of different sampling-based imbalanced learning techniques
on the performance of crashing fault residence prediction models?

– RQ2: How different ensemble-based imbalanced learning techniques impact the per-
formance of crashing fault residence prediction models?

– RQ3: How different cost-sensitive-based imbalanced learning techniques impact the
performance of crashing fault residence prediction models?

– RQ4: How different imbalanced learning techniques impact the performance of crash-
ing fault residence prediction models in cross-project scenario?

– RQ5: How does imbalance level of the crash data impact the performance of imbal-
anced learning techniques?

1.2 OurWork

To fill this gap, we conduct a large-scale empirical study to investigate how different
imbalanced learning techniques impact the performance of crashing fault residence pre-
diction models. More specifically, we explored 19 sampling-based, 15 ensemble-based,
and 8 cost-sensitive-based imbalanced learning techniques. The studied sampling-based
techniques belong to four groups: under-sampling based, over-sampling based, combina-
tive based techniques, and the method without any imbalanced treatment. The investigated
ensemble-based techniques derived from four groups: commonly-used, under-sampling
based, over-sampling based, and compatible techniques.

The experiments are conducted on 7 open-source Java projects released by a previous
work (Gu et al. 2019). To evaluate the performance of these imbalanced learning techniques
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on the classification models for crashing fault residence prediction task, we employ four
evaluation indicators, including F-measure for crash instances in the stack trace (i.e., FIT ),
F-measure for crash instances outside the stack trace (i.e., FOT ), Matthews Correlation
Coefficient (MCC), andAreaUnder the receiver operating characteristicCurve (AUC). We
employ the advanced Scott-Knott Effect Size Difference (SKESD) test proposed by Tan-
tithamthavorn et al. (2016) to assess the experimental results. The results reveal that, overall,
the DT (Decision Tree) classifier without any imbalanced process obtains better prediction
performance among all studied sampling-based imbalanced learning techniques in terms
of four performace indicators. Two imbalanced variants of bagging classifier, including
OBag (Over-sampling with Bagging) and UBag (Under-sampling with Bagging), achieve
better prediction performance among all the investigated ensemble-based imbalanced learn-
ing techniques, whereas two techniques AsymB (Asymmetric adaptive Boost) and CSDT
(Cost-SensitiveDecisionTree) perform better than other cost-sensitive-based techniques. In
addition, experimental results also reveal that UBag and OBag are more suitable for crashing
fault residence prediction task in the context of the cross-project scenario. Further investiga-
tions demonstrate the imbalance level impacts on the predictive performance of imbalanced
learning techniques, in which the UBag technique always obtains better performance even
though the imbalance level changes.

1.3 Contributions

The contributions of this paper are summarized as follows:

– To the best of our knowledge, we are the first to empirically analyze the impact of
imbalanced learning techniques on the performance of crashing fault residence predic-
tion models on such a large scale, because we evaluate the performance of 42 techniques
on a benchmark consisting of 7 projects in terms of four indicators and yield (19 × 7 +
15 + 8) × 7 × 4 = 4,368 results.

– We comprehensively analyze these prediction results in different perspectives by means
of heatmaps and boxplots, and statistically assess the experimental results using the
ranking values derived by the SKESD test.

– We generate some practical findings for developers and researchers. Our findings
suggest that practitioners can choose the imbalanced variants of bagging technique
(including OBag and UBag) to build their predictive models when the performance is
the major concern because these two techniques show excellent results and are more
stable even though the imbalance level changes.

– Our Python code and related materials are shared in our online repository at https://
github.com/sepine/EMSE-2022 to facilitate replication or extension of the work by the
software engineering community.

1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 provides the preliminaries
of the studied imbalanced learning techniques. Sections 3 and 4 describe the experimental
setup and analyze the experimental results, respectively. We discuss the implications, error
analysis, and threats to validity in Section 5 followed by the related work in Section 6.
Finally, we draw the conclusion in Section 7.

https://github.com/sepine/EMSE-2022
https://github.com/sepine/EMSE-2022
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2 Preliminaries

In this section, we briefly introduce the studied imbalanced learning techniques, including
19 sampling-based imbalanced learning techniques (containing one method that only uses
the original crash instances, short forNONE), 15 ensemble-based imbalanced learning tech-
niques, and 8 cost-sensitive-based techniques. Accordingly, we have totally 42 techniques
used for our study. Table 1 depicts the overview of these techniques and the corresponding
abbreviations.

2.1 Sampling-based Techniques

Sampling-based imbalanced learning techniques aim to alter the number of majority (i.e.,
negative) or minority (i.e., positive) instances to deal with the imbalance issue by means
of removing a certain number of majority instances to obtain the balanced dataset (i.e.,
under-sampling), adding a certain number of minority instances to rebalance the dataset
(i.e., over-sampling), or the combinations of these two techniques.

2.1.1 Under-sampling Based Techniques

– Cluster Centroids (CCs) (Leisch 2006) first uses the k-means algorithm to group all
the negative instances into n clusters and then negative instances in each cluster are
replaced by the correponding cluster centroid. n is affected by the number of positive
instances.

– Random Under-Sampling (RUS) (He and Garcia 2009) randomly removes some
negative instances to cater to the data balance.

– Instance Hardness Threshold (IHT) (Smith et al. 2014) first employs one classifier on
the instances and then removes the instances whose classification probibilities are less
than a specific threshold.

– NearMiss (NM) (Mani and Zhang 2003) selects the negative instances by the heuris-
tic rule, that is, choosing n negative instances from the nearest neighbors of positive
instances with the shortest average distance.

– TomekLinks (TkLs) (Tomek et al. 1976b) removes the negative instances according
to the TomekLinks. Specially, assume i1 and i2 are the positive and negative instances
individually, for a given distance function dis(, ) which means the nearest neighbor
relationship between two instances, we have the following relations: dis(i1, i3) <

dis(i1, i2) or dis(i2, i3) < dis(i1, i2), where i3 is a specific instance. If there does not
exist such an instance i3, then we remove the negative instance i2.

– Edited Nearest Neighbors (ENN) (Wilson 1972) adjusts the instances by using the
nearest neighbor algorithm. ENN cleans the negative instances which are close to the
decision boundary.

– Repeated Edited Nearest Neighbors (RepENN) (Tomek et al. 1976a) is an extended
version of ENN, which repeats the ENN methods several times.

– AllKNN (AKNN) (Tomek et al. 1976a) is also an improved version of ENN, which
repeats the original ENN techniques several times. The difference between RepENN
and AKNN is that the number of the nearest neighbor keeps increasing in each iteration
when using the AKNN methods.

– One Sided Selection (OSS) (Kubat et al. 1997) removes the negative instances based
on the one-sided selection by the TomekLinks measurement (Tomek et al. 1976b).
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Table 1 The overview of 42 studied techniques with their abbreviations

Family Techniques Abbreviations

Sampling-based Under-sampling Cluster Centroids CCs

Techniques Techniques Random Under-Sampling RUS

Instance Hardness Threshold IHT

NearMiss NM

TomekLinks TkLs

Edited Nearest Neighbors ENN

Repeated Edited Nearest Neighbors RepENN

AllKNN AKNN

One Sided Selection OSS

Condensed Nearest Neighbor CNN

Neighborhood Cleaning Rule NCR

Over-sampling Adaptive Synthetic Sampling AdaS

Techniques Random Over-Sampling ROS

The Symthetic Minority Over-sampling SMO

Borderline SMO BSMO

Support Vector Machine SMO SSMO

Combinative SMO with ENN SMOENN

techniques SMO with TomekLinks SMOTk

Other NONE NONE

Ensemble-based Commonly-used Bagging Bag

Techniques Techniques Balanced Bagging BalBag

Adaptive Boost AdaB

Under-sampling based Self-Paced Ensemble SPE

Techniques Balance Cascade BalCas

Balanced Random Forest BalRF

Easy Ensemble EasyE

Random Under-Sampling with Boost RUSB

Under Bagging UBag

Over-sampling based Over-Sampling with Adaptive Boost OverB

Techniques SMO with Adaptive Boost SMOB

Over-Sampling with Bagging OBag

SMO with Bagging SMOBag

Compatible Techniques Compatible Adaptive Boost ComAdB

Compatible Bagging ComBag

Cost-sensitive-based Adaptive Cost-sensitive boost AdaC

Techniques Cost-sensitive AdaUBoost AdaUB

Asymmetric Adaptive Boost AsymB

Cost-Sensitive Neural Network CSNN

Cost-Sensitive Logistic Regression CSLR

Cost-Sensitive Decision Tree CSDT

Cost-Sensitive Random Forest CSRF

Cost-Sensitive Support Vector Machine CSSVM
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– Condensed Nearest Neighbor (CNN) (Hart 1968) cleans the instances using the fol-
lowing rules: (1) treating all the positive instances as one set S1; (2) randomly selecting
one negative instance and adding into S1, while the other negative instances are treated
as another set S2; (3) training a nearest neighbor classfier on S2 and obtaining the clas-
sification results; (4) adding the mis-classification instances into S1; (5) repeating the
above procedure until there donot exist any instances that need to be added into S1.
Finally, we retain the set S1 and discard S2.

– Neighborhood Cleaning Rule (NCR) (Laurikkala 2001) resorts the ENN and k-nearest
neighbor techniques for cleaning instances.

2.1.2 Over-sampling Based Techniques

– Adaptive Synthetic sampling (AdaS) (He et al. 2008) generates the positive instances
according to the weighted distribution of these instances.

– Random Over-Sampling (ROS) (He and Garcia 2009) randomly adds replicated pos-
itive instances into the original data until the same number of positive and negative
instances.

– The Symthetic Minority Over-sampling (SMO) (Chawla et al. 2002) generates the
artificial instances based on the original set of positive ones. Specifically, for each pos-
itive instance i, SMO first calculates its k nearest neighbors and then randomly selects
several instances from its nearest neighbors according to a pre-defined sampling rate
associated with the imbalanced ratio of instances. Finally, SMO randomly synthesizes
the new instances based on the instance i and the selected nearest neighbors.

– Borderline SMO (BSMO) (Han et al. 2005) is a variant of SMO, which generates the
new instances according to the positive instances located on the boundary.

– Support vector machine SMO (SSMO) (Nguyen et al. 2011) is an improved version of
SMO, which incorporates the support vector machine method to check instances used
for synthesizing new ones.

2.1.3 The Combinative Techniques

– SMO with ENN (SMOENN) (Batista et al. 2004) copes with the imbalance issue by
combining the over-sampling based SMO technique with under-sampling based ENN
method.

– SMO with TomekLinks (SMOTk) (Batista et al. 2003) adopts SMO method to gen-
erate new instances meanwhile deletes the negative ones based on the TomekLinks
algorithm (Tomek et al. 1976b).

2.2 Ensemble-based Techniques

Ensemble-based imbalanced learning techniques first train a group of individual classifiers
that derived from the existing learning algorithms and then incorporate these classifiers
by means of some specific strategies. The aim is to deal with the imbalance issue for
obtaining the advanced classification performance compared with the individual classi-
fier. In this work, we focus on the following five types of the ensemble techniques:
commonly-used, under-sampling based, over-sampling based, re-weighting based, and
compatible techniques.
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2.2.1 Commonly-used Techniques

• Bagging (Bag) (Breiman 1996) randomly selects several instance subsets by means of
putting back instances in each sampling process. For each subset, Bag trains a weak
classifier and then integrates such basic classifiers to produce a stronger classifier.

• Balanced Bagging (BalBag) (Louppe and Geurts 2012) introduces the additional
balancing strategy into the bagging classifier.

• Adaptive Boost (AdaB) (Freund and Schapire 1997) adjusts the weights of instances
that are inaccurately predicted in each step of the boosting algorithm.

2.2.2 Under-sampling Based Techniques

– Self-Paced Ensemble (SPE) (Liu et al. 2020) utilizes a self-paced factor to execute the
self-paced harmonize under-sampling process according to the hardness distribution of
negative instances.

– BalancedCascade (BalCas) (Liu et al. 2008) sequentially trains the classfication model
and the negative instances that are correctly predicted in each training iteration are
deleted.

– Balanced Random Forest (BalRF) (Chen et al. 2004) randomly under-samples
instances by a balanced random forest model to make the whole dataset rebalanced.

– EasyEnsemble (EasyE) (Liu et al. 2008) first samples several subsets from the negative
instances and then treats each subset and all the positive instances as a whole to train a
base classifier. Finally, EasyE combines the results of each classifier as the final output.

– Random Under-Sampling with Boost (RUSB) (Seiffert et al. 2009) adopts the RUS
technique during each process of the boosting algorithm.

– Under Bagging (UBag) (Chen et al. 2004) incorporates the RUS technique into the
bagging classifier.

2.2.3 Over-sampling Based Techniques

– Over-sampling with adaptive Boost (OverB) (Chawla et al. 2003) combines the ROS
method and boosting process to relieve the imbalance issue.

– SMOwith adaptive Boost (SMOB) (Chawla et al. 2003) introduces the SMO technique
into the boosting process to alleviate the imbalance issue.

– Over-sampling with Bagging (OBag) (Maclin and Opitz 1997) integrates the ROS
approach into the bagging procedure.

– SMO with Bagging (SMOBag) (Wang and Yao 2009) first employs the SMO tech-
nique to generate more comprehensively positive instances and then trains the bagging
classifier based on the newly-produced instances.

2.2.4 Compatible Techniques

– Compatible Adaptive Boost (ComAdB) (Freund and Schapire 1997) ameliorates the
AdaB method to cater to the imbalanced-ensemble style in which the weights of
inaccurately predicted instances are modified.

– Compatible Bagging (ComBag) (Ho 1998; Louppe and Geurts 2012) modifies the
bagging approach in the way of randomizing the construction of base classfiers. The
aim is to decrease the variance of the classifiers.
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2.3 Cost-sensitive-based Techniques

Cost-sensitive-based imbalanced learning techniques aim to change the weights of crash
instances from different classes based on the number of data in each class.

– Adaptive Cost-sensitive boost (AdaC) (Fan et al. 1999) modifies the AdaB algorithm
via reducing the misclassification cost by means of increasing weights of incorrectly
classified instances and decreasing weights of correctly classified ones.

– Cost-sensitive AdaUBoost (AdaUB) (Shawe-Taylor and Karakoulas 1999) is a variant
of the AdaB technique, which introduces the step of data preprocessing to optimize the
unequal loss. The corresponding aim is to lessen the misclassification cost.

– Asymmetric adaptive Boost (AsymB) (Viola and Jones 2001) improves the AdaB
method by means of changing the data distribution via the asymmetric misclassification
cost during the boosting process step.

– Cost-Sensitive Neural Network (CSNN) employs the forward neural network to clas-
sify the crash instances in which different classes are given distinct class weights (Abadi
et al. 2016).

– Cost-Sensitive Logistic Regression (CSLR) adopts the logistic regression as the basic
classifier meanwhile relieving the imbalanced issue by adjusting the instance weights
of different classes (Yu et al. 2011).

– Cost-Sensitive Decision Tree (CSDT) employs the decision tree as the basic classifier
meanwhile adjusting weights of instances in different classes to deal with the class
imbalanced issue (Loh 2011).

– Cost-Sensitive Random Forest (CSRF) alters the instance weights of different classes
and utilizes the random forest for classification (Breiman 2001).

– Cost-Sensitive Support Vector Machine (CSSVM) takes class imbalanced issue into
account by changing the weights of instances in different classes and uses the support
vector machine for classification (Platt et al. 1999).

3 Experimental Setup

3.1 Data Preparation

As our goal is to conduct a large-scale empirical study to investigate how different imbal-
anced learning techniques impact the performance of the crash fault residence prediction
models, in this work, we adopt a publicly available dataset released by a recent study (Gu
et al. 2019) as our benchmark dataset. It contains 7 Java projects: Codec, Apache Com-
mons Collections, Apache Commons IO, Jsoup, JSqlParser, Mango, and Ormlite-Core.
The crash instances in these projects are derived from the real-world crashes simulated by
the PIT1 tool and the simulated crash instances are filtered based on the pre-defined rules to
retain the useful instances. Then, the static program analyzer Spoon (Pawlak et al. 2016) is
employed to extract 89 features that are used to represent each crash instance. The detailed
information of the 89 features are showed in Table 2, which consists of the following 5 cat-
egories: Features Related to the Stack Trace (FRST), the Top Frame (FRTF), the Bottom
Frame (FRBF), and features Normalized by LOC (lines of code) from FRTF (NFRTF)

1http://pitest.org

http://pitest.org
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and FRBF (NFRBF). As for the instance labels, if the residence of a crash instance exactly
matches the elements of one frame in the stack trace, i.e., the class name, function name,
and code line number, this crash instance is considered as inside the stack trace and labeled
as ‘InTrace’; otherwise, ‘OutTrace’. All these information associated with labels can be
obtained from the bug-fixing logs (Gu et al. 2019). The detailed statistic information of the

Table 2 The detailed information of 89 features (Gu et al. 2019)

Feature Description

FRST Features related to the stack trace

FRST01 Type of the exception in the crash

FRST02 Number of frames of the stack trace

FRST03 Number of classes in the stack trace

FRST04 Number of functions in the stack trace

FRST05 Whether an overloaded function exists in the stack trace

FRST06 Length of the name in the top class

FRST07 Length of the name in the top function

FRST08 Length of the name in the bottom class

FRST09 Length of the name in the bottom function

FRST10 Number of Java files in the project

FRST11 Number of classes in the project

FRTF (and FRBF) Features related to the top frame and the bottom frame

FRTF01 (FRBF01) Number of local variables in the top/bottom class

FRTF02 (FRBF02) Number of fields in the top/bottom class

FRTF03 (FRBF03) Number of functions (except constructor functions)
in the top/bottom class

FRTF04 (FRBF04) Number of imported packages in the top/bottom class

FRTF05 (FRBF05) Whether the top/bottom class is inherited from others

FRTF06 (FRBF06) LOC of comments in the top/bottom class

FRTF07 (FRBF07) LOC of the top/bottom function

FRTF08 (FRBF08) Number of parameters in the top/bottom function

FRTF09 (FRBF09) Number of local variables in the top/bottom function

FRTF10 (FRBF10) Number of if-statements in the top/bottom function

FRTF11 (FRBF11) Number of loops in the top/bottom function

FRTF12 (FRBF12) Number of for statements in the top/bottom function

FRTF13 (FRBF13) Number of for-each statements in the top/bottom function

FRTF14 (FRBF14) Number of while statements in the top/bottom function

FRTF15 (FRBF15) Number of do-while statements in the top/bottom function

FRTF16 (FRBF16) Number of try blocks in the top/bottom function

FRTF17 (FRBF17) Number of catch blocks in the top/bottom function

FRTF18 (FRBF18) Number of finally blocks in the top/bottom function

FRTF19 (FRBF19) Number of assignment statements in the top/bottom function

FRTF20 (FRBF20) Number of function calls in the top/bottom function

FRTF21 (FRBF21) Number of return statements in the top/bottom function

FRTF22 (FRBF22) Number of unary operators in the top/bottom function

FRTF23 (FRBF23) Number of binary operators in the top/bottom function
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Table 2 (continued)

Feature Description

NFRTF (and NFRBF) Features normalized by LOC from FRTF and FRBF

NFRTF01 (NFRBF01) FRTF08/FRTF07 (FRBF08/FRBF07)

NFRTF02 (NFRBF02) FRTF09/FRTF07 (FRBF09/FRBF07)

NFRTF03 (NFRBF03) FRTF10/FRTF07 (FRBF10/FRBF07)

NFRTF04 (NFRBF04) FRTF11/FRTF07 (FRBF11/FRBF07)

NFRTF05 (NFRBF05) FRTF12/FRTF07 (FRBF12/FRBF07)

NFRTF06 (NFRBF06) FRTF13/FRTF07 (FRBF13/FRBF07)

NFRTF07 (NFRBF07) FRTF14/FRTF07 (FRBF14/FRBF07)

. . . . . .

NFRTF14 (NFRBF14) FRTF21/FRTF07 (FRBF21/FRBF07)

NFRTF15 (NFRBF15) FRTF22/FRTF07 (FRBF22/FRBF07)

NFRTF16 (NFRBF16) FRTF23/FRTF07 (FRBF23/FRBF07)

7 projects is displayed in Table 3, where # LOC means the lines of code and # Instances rep-
resents the number of crash instances. # InTrace and # OutTrace means the number of crash
instances inside the stack trace and outside the stack trace, individually. IR signifies the
imbalance ratio that is defined as the the number of negative crash instances (i.e., OutTrace)
divided by positive ones (i.e., InTrace).

Furthermore, for each used project, we adopt the stratified sampling method to separate
all the crash instances into a training set and a test set. Specifically, we first split the crash
instances according to their labels into two subsets Sp (with label FIT ) and Sn (with label
FOT ). Then, we randomly single out half of the crash instances from the two subsets Sp and
Sn respectively, and put them together to form the training set. The remainder in Sp and Sn

are comprised as the test set. This strategy ensures the same proportion of classes among
the training set, test set and original data. After that, we also use the z-score technique to
normalize the training set and the test set separately. Specifically, we first fit the training
set into the z-score method to obtain the mapping rule and then transform the training set
and test set according to this rule. For the sampling-based techniques, we first apply them
to the training set to make it rebalanced and then use the rebalanced training set to construct
the classification model. Finally, we use the trained classification model on the test set
for prediction. For the ensemble-based techniques, the normalized training set is directly
applied to building the ensemble classifiers and the corresponding test set is used to evaluate

Table 3 The detailed statistic
information of the 7 Java projects Project # LOC # Instances # InTrace # OutTrace IR

Codec 14,480 610 177 433 2.45

Collections 61,283 1,350 273 1,077 3.95

IO 26,018 686 149 537 3.60

Jsoup 15,460 601 120 481 4.01

JSqlParser 32,868 647 61 586 9.61

Mango 30,208 733 53 680 12.83

Ormlite-Core 20,024 1,303 326 977 3.00
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Fig. 1 An overall framework of our experiment process

the performance of these ensemble models. Figure 1 elaborates the overall framework of
our experiment process. For each project, we employ the stratified sampling to obtain the
training set and test set. Because this splitting process is random, we repeat it 50 times
for each project to alleviate the deviation. Thus, we have 50 experimental results for each
technique on each project in term of each indicator.

3.2 Evaluation Indicators

Following the previous studies (Xu et al. 2020; Zhao et al. 2021a, b), we apply the F-
measure,Matthews Correlation Coefficient (MCC), and Area Under the receiver operating
characteristic Curve (AUC) as indicators to evaluating the performance of crashing fault
residence prediction models. As our prediction task is a traditional binary classification
task, in general, the evaluation indicators are derived from the confusion matrix in Table 4,
where each part indicates the possibly predicted counts produced by a binary
classifier. More specifically, TP denotes the number of truely positive crash
instances that are predicted as positive. FN denotes the number of truely
positive crash instances that are predicted as negative. FP denotes the num-
ber of truely negative crash instances that are predicted as positive and TN
denotes the number of truely negative crash instances that are predicted
as negative.

Table 4 The Confusion matrix
Predicted as Positive Predicted as Negative

Truely Positive TP FN

Truely Negative FP TN
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When we treat the postive instances as those of inside the stack trace (i.e., InTrace), the
FIT can be calculated by the following formula:

FIT = 2 × TP

2 × TP + FN + FP
(1)

where TP, FN, and FP are counted when crash instances that reside in the stack trace are
regared as positive ones. Similarly, when the crash instances located outside the stack trace
are deemed as positive instances, we can also define the FOT by the following equation:

FOT = 2 × TP′

2 × TP′ + FN′ + FP′ (2)

where TP′, FN′, and FP′ are counted when crash instances that reside outside the stack trace
are considered as positive ones.

From the above evaluation indicators, we can observe that F-measure ignores the item
‘TN’, which causes the information loss to a certain degree. Thus, we introduce a compre-
hensive evaluation indicator MCC that is more suitable for assessing the performance of the
model trained on the dataset with inherently imbalanced characteristic. MCC is defined as
the following equation:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

When considering the positive instances as the crash instances inside and outside the
stack trace separately, we can acquire the same MCC value (Zhao et al. 2021b).

In addition to the above-mentioned indicators, we also utilize the AUC to evaluate the

prediction performance. In the curve, the x-aixs represents the false positive rate
(

FP
FP+TN

)

and the y-axis represents the true positive rate
(

TP
TP+FN

)
. The AUC value is defined as the

area enclosed by the curve and the two coordinates. Obviously, treating the two classes of
crash instances separately as positive ones simply means swapping the x-axis and y-axis.
Thus, the AUC value is the same under the above two situations.

FIT , FOT , and AUC are in the range of 0 to 1, and MCC is in the range of -1 to 1.
Among these indicators, the larger value means better prediction performance. Previous
studies have widely used these indicators for model evaluation towards research topics in
software engineering (Xu et al. 2020; Zhao et al. 2021a, b; Song et al. 2018; Fan et al., 2018;
Fang et al. 2020).

3.3 ClassificationModels

Since the ensemble-based techniques contain the built-in function for classification, we
can employ them to construct the crash fault residence prediction model directly. How-
ever, as the sampling-based techniques only focus on modifying the number of positive and
negative instances to be equal, to build the prediction model, we employ 7 traditional clas-
sification models to this end, including Decision Tree (DT) (Loh 2011), Random Forest
(RF) (Breiman 2001), Logistic Regression (LR) (Yu et al. 2011), Support Vector Machine
(SVM) (Platt et al. 1999),Multi-Layer Perceptron (MLP) (Hinton 1990),NearestNeighbor
(NN) (Cover and Hart 1967), and Repeated incremental pruning to produce error reduction
(Ripper) (Fürnkranz 1999). Below, we briefly present these classification models.

– DT adopts the tree-based structure to build the decision process, which consists of a
root node, several internal nodes that represent the judgement condition for spliting
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features and several leaf nodes that means the decision results. We use the gini index
(Lerman and Yitzhaki 1984) as spliting condition for producing decision tree.

– RF is an extended version of the bagging classifier, which constructs the bagging
ensemble based on the decision tree model.

– LR is a classic linear classification model that uses the logistic function.
– SVM uses a non-linear mapping function to convert the original crash data into a new

latent space and then introduces a hyperplane to produce robust classification results.
– MLP is a type of forward artificial neural network, which consists of the input layer,

hidden layer and output layer, and also integrates the activation function to deal with
the non-linear classification problem.

– NN predicts the class label of each instance by means of the majority class label among
its several nearest neighbors.

– Ripper is a rule-based classification model that generates a set of rules by the
information gain criteria and then ranks the classes according to their frequencies.

3.4 Statistic Test

To investigate the significant difference of the experimental results for crashing faults
residence prediction task, we employ the advanced Scott-Knott Effect Size Difference
(SKESD) test proposed by Tantithamthavorn et al. (2016). This statistic test method adopts
the hierarchical clustering approach to produce the distinct ranking groups. It is worth
mentioning that this method modifies the drawback of the original Scott-Knott test by log-
transforming the inputs and perfecting the discrepant groups with inappreciable Cohens
delta effect size into one group. Concretely, the double-round SKESD test is used for signif-
icant differences analysis. In the first round, we take as input the 50 indicator values of each
imbalance learning technique on each studied project to SKESD and obtain their ranking
results on project-level, respectively. In the second round, we combine the ranking results
of each imbalance learning technique among all studied projects and take as input them
to SKESD again, and then the overall ranking results are output as the final ranks. By the
double-round SKESD test, we can generate a comprehensively global ranking list for each
imbalance learning method among all projects. Note that the lower ranking value on each
method implies better prediction performance compared with other baselines.

4 Results and Analysis

4.1 RQ1: What are the Impacts of Different Sampling-based Imbalanced Learning
Techniques on the Performance of Crashing Fault Residence PredictionModels?

The main goal of this question is to explore how the sampling-based imbalanced learning
techniques affect the performance of classification models for crashing fault residence pre-
diction task. For this purpose, we report the results of each sampling-based technique on
each classification model in terms of each indicator among all 7 studied projects. Besides,
we apply the SKESD test to these classification results and analyze the ranks of these
sampling-based techniques in terms of each evaluation indicator.

Accordingly, we have totally 19 (sampling-based techniques) × 7 (classification models)
× 50 (experiment repeats) × 7 (projects) = 46,550 values and 19 × 7 = 133 average values
for each indicator. To make the results more intuitive, we report the average results using
the heat map. Figure 2 demonstrates the average values of each sampling-based imbalanced
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Fig. 2 Average value of each sampling-based technique for each classifier among all projects in terms of all
four indicators
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learning technique on each classification model among all 7 projects with each indicator,
respectively. The darker color among the cells means better performance. Also, the corre-
sponding SKESD ranking results are showed in Fig. 3. The lighter color in each row means
that it obtains higher ranks (i.e., poor performance) among the sampling-based techniques
when adopting the same classifier. From these two figures, we can draw the following
findings:

First, in terms of FIT from Fig. 2(a), we can observe that, two classification models
(including LR and MLP) obtain better prediction performance on most of the sampling-
based techniques, while one classifier (i.e., Ripper) achieves the worst prediction perfor-
mance among nearly all sampling-based techniques. In addition, the SMO technique and
its variants (including SSMO, SMOTk, and BSMO) always obtain better prediction perfor-
mance on nearly all classfication models, while one under-sampling based technique (i.e.,
NM) achieves the worst prediction performance on 5 out of 7 classification models (except
for LR and Ripper). Interestingly, the combination of NONE with DT classifier acquires
the best FIT value of 0.67. From Fig. 3(a), we can observe that, the largest ranking num-
ber for the 7 classifiers is around 10, which signifies that the prediction performance on
these classification models have significant differences among all studied sampling-based
imbalanced learning techniques. In addition, three over-sampling based techniques (includ-
ing ROS, SMO, and BSMO) and one combinative technique (i.e., SMOTk) belong to the
top-3 SKESD ranking groups among most of the classifiers, in which ROS belongs to top-1
or top-2 ranking groups among the classifiers (except for Ripper) and appears in the top-3
SKESD ranking groups for nearly 86% of the classification models.

Second, in terms of FOT from Fig. 2(b), we can observe that, two classification models
(including LR and SVM) obtain better prediction performance on most of the sampling-
based techniques, while two classifiers (including DT and RF) achieve worse prediction
performance on most of sampling-based techniques. In addition, two under-sampling based
techniques (including TkLs and OSS) and the NONE technique always obtains better pre-
diction performance on nearly all classification models, while one under-sampling based
technique (i.e., NM) achieves the worst prediction performance on 5 out of 7 classfication
models (except for DT and Ripper). Moreover, six combinations (including NONE with DT,
NONE with SVM, TkLs with DT, TkLs with SVM, OSS with SVM, and ROS with DT)
obtain the best FOT value of 0.92. From Fig. 3(b), we can observe that, the largest rank-
ing number for the 7 classifiers is equal or more than 10, which signifies that the prediction
performance on these classification models have significant differences among all studied
sampling-based imbalanced learning techniques. In addition, the NONE method belongs to
the top-3 SKESD ranking groups among all the classifiers. In particular, it appears in the
top-1 SKESD group for nearly 86% of the classification models.

Third, in terms of MCC from Fig. 2(c), we can observe that, two classification
models (including LR and MLP) obtain better prediction performance on most of the
sampling-based techniques, while one classifier (i.e., Ripper) achieves the worst predic-
tion performance among all sampling-based techniques. In addition, two over-sampling
based techniques (including ROS and SSMO) always obtain better prediction performance
on nearly all classification models, while one under-sampling based technique (i.e., NM)
achieves the worst prediction performance on all classification models. Interestingly, the
NONE method with DT classifier acquires the best MCC value of 0.6. From Fig. 3(c),
we can observe that, the largest ranking number for the 7 classifiers is around 10, which
signifies that the prediction performance on these classification models have significant dif-
ferences among all studied sampling-based imbalanced learning techniques. In addition,
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Fig. 3 The rank of SKESD test of each sampling-based technique for each classifier among all projects in
terms of all four indicators
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three over-sampling based techniques (including ROS, SMO, and SSMO) belong to the top-
3 SKESD ranking groups among most of the classifiers in which ROS appears in the top-3
SKESD ranking groups for nearly 86% of the classification models.

Fourth, in terms of AUC from Fig. 2(d), we can observe that, one classification model
(i.e., LR) obtains better prediction performance on most of sampling-based techniques,
while another classifier (i.e., Ripper) achieves the worst prediction performance among all
studied sampling-based techniques. In addition, one over-sampling based technique (i.e.,
SMO) and one combinative technique (i.e., SMOTk) always obtain better prediction perfor-
mance on nearly all classification models, while one under-sampling based technique (i.e.,
NM) achieves worse prediction performance on 6 out of 7 classification models (except for
RF). Moreover, seven combinations (including NONE with DT, TkLs with DT, ENN with
MLP, OSS with DT, NCR with MLP, ROS with SVM, and ROS with DT) obtain the best
AUC value of 0.79. From Fig. 3(d), we can observe that, the largest ranking number for the
7 classifiers is around 10, which signifies that the prediction performance on these classi-
fication models have significant differences among all studied sampling-based imbalanced
learning techniques. In addition, one over-sampling based technique (i.e., ROS) and one
combinative technique (i.e., SMOTk) belong to the top-3 SKESD ranking groups among
most of the classifiers, in which ROS appears in the top-3 SKESD ranking groups for nearly
71% of the classification models.

Fifth, from Fig. 2(a)-(d), we can find that, one under-sampling based technique (i.e.,
NM) always achieves the worst prediction performance among all four indicators, while two
over-sampling based techniques (including ROS and SMO) and the NONE method achieve
better prediction performance among all four indicators. Particularly, the NONE method
with DT classifier obtains the best prediction performance among all four indicators, while
the classifier Ripper seems an inadaptable choice for crashing fault residence prediction
task because it always acquires the worst performance among nearly all sampling-based
techniques.

It is worth mentioning that a recent study (Gu et al. 2019) showed that only adopt-
ing the DT classifier achieved better performance on 5 out of 7 projects for crashing fault
residence prediction task in terms of FIT and FOT compared with incorporating SMOTE
strategy into DT. This conclusion demonstrates the correctness of our experimental results to
some extent.

Answer to RQ1

DT classifier combining the NONE method without any treatment to balance the
crash instances produces the best prediction performance under the imbalanced
dataset, which indicates that sampling-based techniques do not always promote the
performance of crashing fault residence prediction models.

4.2 RQ2: How Different Ensemble-based Imbalanced Learning Techniques Impact
the Performance of Crashing Fault Residence PredictionModels?

The main aim of this question is to explore how the ensemble-based imbalanced learning
techniques affect the performance of models. For this purpose, we report the results of
each ensemble-based technique in terms of each indicator among all 7 studied projects.
We choose DT as the base classifier because it obtains better prediction result as shown
in Section 4.1. We also treat DT as the basic method to explore whether ensemble-based
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Table 5 The average FIT value of each ensemble-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

SPE 0.714 0.790 0.770 0.616 0.688 0.607 0.862

BalCas 0.719 0.784 0.765 0.599 0.647 0.597 0.871

BalRF 0.666 0.662 0.735 0.529 0.522 0.366 0.753

EasyE 0.710 0.776 0.762 0.590 0.612 0.514 0.857

RUSB 0.513 0.579 0.640 0.426 0.569 0.498 0.698

UBag 0.710 0.776 0.762 0.590 0.612 0.514 0.857

OverB 0.555 0.726 0.748 0.552 0.683 0.702 0.834

SMOB 0.634 0.666 0.704 0.510 0.501 0.502 0.760

OBag 0.715 0.798 0.763 0.564 0.664 0.734 0.862

SMOBag 0.709 0.641 0.771 0.592 0.703 0.623 0.806

ComAdB 0.529 0.726 0.743 0.517 0.708 0.665 0.835

ComBag 0.723 0.798 0.749 0.590 0.735 0.625 0.843

Bag 0.707 0.789 0.734 0.564 0.716 0.595 0.837

BalBag 0.684 0.757 0.737 0.551 0.589 0.481 0.847

AdaB 0.545 0.717 0.742 0.526 0.714 0.661 0.833

DT 0.663 0.749 0.704 0.531 0.708 0.541 0.812

techniques improve the prediction performance. In addition, we also adopt the SKESD test
to these results and analyze the ranks of these ensemble-based techniques in terms of each
evaluation indicator.

Accordingly, we have totally 16 (15 ensemble-based techniques and the basic DT) × 50
(experiment repeats) × 7 (projects) = 5,600 values and 16 × 7 = 112 average values for each

Table 6 The average FOT value of each ensemble-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

SPE 0.881 0.947 0.937 0.884 0.964 0.957 0.957

BalCas 0.877 0.942 0.933 0.873 0.954 0.950 0.958

BalRF 0.822 0.886 0.911 0.813 0.913 0.876 0.899

EasyE 0.871 0.939 0.927 0.871 0.946 0.939 0.953

RUSB 0.819 0.892 0.905 0.855 0.947 0.951 0.900

UBag 0.871 0.939 0.927 0.871 0.946 0.939 0.953

OverB 0.856 0.938 0.937 0.909 0.973 0.980 0.948

SMOB 0.819 0.894 0.903 0.805 0.884 0.916 0.899

OBag 0.889 0.951 0.940 0.912 0.972 0.982 0.958

SMOBag 0.857 0.840 0.933 0.891 0.970 0.958 0.926

ComAdB 0.855 0.940 0.937 0.907 0.975 0.978 0.947

ComBag 0.894 0.953 0.936 0.912 0.967 0.976 0.952

Bag 0.890 0.950 0.934 0.908 0.967 0.971 0.951

BalBag 0.860 0.933 0.921 0.865 0.937 0.931 0.949

AdaB 0.859 0.937 0.937 0.907 0.975 0.978 0.947

DT 0.867 0.936 0.922 0.879 0.966 0.957 0.939



   49 Page 20 of 45 Empir Software Eng           (2023) 28:49 

Table 7 The average MCC value of each ensemble-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

SPE 0.600 0.739 0.710 0.516 0.659 0.591 0.821

BalCas 0.603 0.728 0.702 0.492 0.615 0.577 0.831

BalRF 0.513 0.574 0.660 0.398 0.496 0.357 0.668

EasyE 0.590 0.718 0.694 0.479 0.580 0.493 0.813

RUSB 0.348 0.476 0.556 0.296 0.532 0.464 0.604

UBag 0.590 0.718 0.694 0.479 0.580 0.493 0.813

OverB 0.437 0.673 0.694 0.480 0.676 0.701 0.784

SMOB 0.468 0.576 0.622 0.370 0.461 0.484 0.678

OBag 0.612 0.752 0.709 0.494 0.662 0.729 0.824

SMOBag 0.582 0.547 0.708 0.488 0.677 0.608 0.740

ComAdB 0.418 0.677 0.689 0.450 0.702 0.663 0.785

ComBag 0.625 0.756 0.691 0.513 0.718 0.622 0.800

Bag 0.607 0.744 0.678 0.486 0.697 0.588 0.792

BalBag 0.554 0.694 0.663 0.428 0.553 0.460 0.797

AdaB 0.438 0.663 0.689 0.456 0.707 0.659 0.783

DT 0.538 0.687 0.630 0.417 0.684 0.515 0.754

indicator. According to the 50 random data splits for each project, we report the average
results of each compared technique on each project in terms of each indicator in Tables 5, 6,
7 and 8, respectively. Similarly, we also report the average results of 50 random splits in the
following sections. To make the results more intuitive, we report the average results using
the box plot. Figure 4 demonstrates the indicator values of each ensemble-based imbalanced

Table 8 The average AUC value of each ensemble-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

SPE 0.800 0.865 0.849 0.783 0.847 0.852 0.904

BalCas 0.807 0.874 0.852 0.768 0.837 0.844 0.915

BalRF 0.776 0.828 0.859 0.739 0.836 0.790 0.863

EasyE 0.804 0.870 0.863 0.767 0.843 0.821 0.907

RUSB 0.665 0.737 0.767 0.645 0.782 0.755 0.800

UBag 0.804 0.870 0.863 0.767 0.843 0.821 0.907

OverB 0.691 0.809 0.823 0.707 0.789 0.796 0.881

SMOB 0.746 0.817 0.824 0.715 0.784 0.809 0.864

OBag 0.800 0.863 0.834 0.714 0.777 0.820 0.901

SMOBag 0.806 0.802 0.857 0.752 0.826 0.820 0.887

ComAdB 0.678 0.806 0.818 0.687 0.804 0.776 0.882

ComBag 0.803 0.856 0.827 0.733 0.828 0.755 0.886

Bag 0.791 0.852 0.815 0.717 0.819 0.744 0.880

BalBag 0.783 0.859 0.842 0.735 0.828 0.808 0.901

AdaB 0.687 0.802 0.817 0.691 0.801 0.774 0.881

DT 0.764 0.841 0.804 0.706 0.827 0.746 0.873
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learning technique among all 7 projects with each indicator, respectively. The red lines
inside the boxes represent the mean indicator values. Besides, the corresponding SKESD
ranking results are showed in Fig. 5. Different colors mean that these techniques belong to
distinct groups with significant differences. From these four tables and two figures, we can
draw the following observations:

First, in terms of FIT from Table 5 and Fig. 4(a), we can observe that, three ensemble-
based techniques (including OBag, ComBag, and SPE) achieve better prediction perfor-
mance, i.e., the average FIT value of 0.729, 0.723, and 0.721 respectively, among all 16
studied baseline techniques, while one under-sampling based technique (i.e., RUSB) obtains
the worst prediction performance with the average FIT value of 0.560. Compared with
DT, 11 out of 15 ensemble-based techniques obtain better performance with an average
improvement by 4.0%. In addition, from Fig. 5(a), we can see that four ensemble techniques
(including OBag, SPE, ComBag, and BalCas) belong to the top SKESD ranking group in
which OBag ranks the first and has significant differences compared with other baselines in
terms of FIT .

Second, in terms of FOT from Table 6 and Fig. 4(b), we can observe that, two ensemble-
based techniques (including OBag and ComBag) achieve better prediction performance,
i.e., the average FOT value of 0.943 and 0.941 respectively, among all 16 studied baseline
techniques, while one under-sampling based technique (i.e., BalRF) and one over-sampling
based technique (i.e., SMOB) obtain the worst prediction performance with the average
FOT value of 0.874. Compared with DT, 8 out of 15 ensemble-based techniques obtain
better performance with an average improvement by 1.2%. In addition, from Fig. 5(b), we
can see that one over-sampling based ensemble technique (i.e., OBag) belongs to the top
SKESD ranking group and has significant differences compared with other baselines in
terms of FOT .

Third, in terms of MCC from Table 7 and Fig. 4(c), we can observe that, two ensemble-
based techniques (including OBag and ComBag) achieve better prediction performance,
i.e., the average MCC value of 0.683 and 0.675 respectively, among all 16 studied baseline
techniques, while one under-sampling based technique (i.e., RUSB) obtains the worst pre-
diction performance with the average MCC value of 0.468. Compared with DT, 11 out of
15 ensemble-based techniques obtain better performance with an average improvement by
6.6%. In addition, from Fig. 5(c), we can see that two ensemble techniques (including OBag
and ComBag) belong to the top SKESD ranking group in which OBag ranks the first and
has significant differences compared with other baselines in terms of MCC.

Fourth, in terms of AUC from Table 8 and Fig. 4(d), we can observe that, three under-
sampling based ensemble techniques (including SPE, BalCas, and UBag) achieve better
prediction performance, i.e., the average AUC value of 0.843, 0.842, and 0.839 respectively,
among all 16 studied baseline techniques, while two ensemble-based technique (including
ComAdB and AdaB) obtain the worst prediction performance with the average AUC value
of 0.779. Compared with DT, 10 out of 15 ensemble-based techniques obtain better perfor-
mance with an average improvement by 4.0%. In addition, from Fig. 5(d), we can see that
four ensemble-based techniques (including UBag, EasyE, BalCas, and SPE) belong to the
top SKESD ranking group and have significant differences compared with other baselines
in terms of AUC.

Fifth, by analyzing Tables 5-8, Figs. 4(a)-(d), and 5(a)-(d), we can find that, the over-
sampling based ensemble technique OBag achieves the best prediction performance and
ranks the first in the SKESD ranking groups in terms of three indicators except for AUC,
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Fig. 4 Box plot of average value of each ensemble-based technique among all projects in terms of all four
indicators
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Fig. 5 SKESD rank of each ensemble-based technique across all projects in terms of all four indicators
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Table 9 The average FIT value of each cost-sensitive-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

AdaC 0.586 0.574 0.725 0.540 0.328 0.197 0.793

AdaUB 0.533 0.717 0.739 0.514 0.690 0.688 0.826

AsymB 0.543 0.716 0.739 0.525 0.731 0.650 0.829

CSNN 0.500 0.589 0.723 0.365 0.734 0.495 0.675

CSLR 0.627 0.568 0.702 0.550 0.624 0.590 0.668

CSDT 0.646 0.741 0.706 0.539 0.531 0.631 0.829

CSRF 0.565 0.580 0.691 0.448 0.624 0.384 0.640

CSSVM 0.637 0.615 0.738 0.577 0.612 0.499 0.695

while the under-sampling based ensemble technique RUSB constantly obtains worse pre-
diction performance among all four indicators. In addition, another under-sampling based
ensemble technique UBag obtains the best prediction performance when treating the AUC
as evaluation indicator.

Answer to RQ2

The over-sampling based ensemble technique OBag (with , , and MCC
indicators) and the under-sampling based ensemble technique UBag (with AUC
indicator) achieve better prediction performance under the imbalance dataset,
which indicates that the imbalanced variants of the bagging classifier improve the
performance of the crashing fault residence prediction model.

4.3 RQ3: How Different Cost-sensitive-based Imbalanced Learning Techniques
Impact the Performance of Crashing Fault Residence PredictionModels?

The main aim of this question is to explore how the cost-sensitive-based imbalanced learn-
ing techniques affect the performance of models. For this purpose, we report the results of
each cost-sensitive-based technique in terms of each indicator among all 7 studied projects.
In addition, we also adopt the SKESD test to these results and analyze the ranks of these
cost-sensitive-based techniques in terms of each evaluation indicator.

Table 10 The average FOT value of each cost-sensitive-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

AdaC 0.848 0.812 0.913 0.855 0.000 0.000 0.920

AdaUB 0.856 0.937 0.935 0.903 0.974 0.980 0.945

AsymB 0.857 0.937 0.935 0.907 0.975 0.973 0.947

CSNN 0.835 0.916 0.930 0.886 0.976 0.970 0.905

CSLR 0.808 0.847 0.904 0.854 0.952 0.959 0.866

CSDT 0.835 0.930 0.920 0.876 0.936 0.965 0.940

CSRF 0.749 0.858 0.911 0.800 0.951 0.898 0.848

CSSVM 0.806 0.878 0.918 0.875 0.957 0.945 0.879
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Table 11 The average MCC value of each cost-sensitive-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

AdaC 0.444 0.455 0.648 0.415 0.215 0.078 0.723

AdaUB 0.421 0.664 0.683 0.437 0.683 0.689 0.776

AsymB 0.431 0.662 0.684 0.458 0.721 0.646 0.779

CSNN 0.352 0.524 0.658 0.287 0.720 0.505 0.587

CSLR 0.453 0.447 0.613 0.424 0.588 0.565 0.547

CSDT 0.495 0.674 0.631 0.425 0.494 0.607 0.772

CSRF 0.353 0.462 0.605 0.284 0.594 0.359 0.508

CSSVM 0.466 0.509 0.662 0.462 0.576 0.467 0.586

Accordingly, we have totally 8 (cost-sensitive-based techniques) × 50 (experiment
repeats) × 7 (projects) = 2,800 values and 8 × 7 = 56 average values for each indicator. We
report the average results of each compared technique on each project in terms of each indi-
cator in Tables 9, 10, 11 and 12, respectively. To make the results more intuitive, we report
the average results using the box plot. Figure 6 demonstrates the indicator values of each
cost-sensitive-based imbalanced learning technique among all 7 projects with each indica-
tor, respectively. The red lines inside the boxes represent the mean indicator values. Besides,
the corresponding SKESD ranking results are showed in Fig. 7. Different colors mean that
these techniques belong to distinct groups with significant differences. From these four
tables and two figures, we can draw the following observations:

First, in terms of FIT from Table 9 and Fig. 6(a), we can observe that, two cost-sensitive-
based techniques (including AsymB and AdaUB) achieve better prediction performance,
i.e., the average FIT value of 0.676 and 0.672 respectively, among all 8 studied cost-
sensitive-based techniques, while one technique (i.e., AdaC) obtains the worst prediction
performance with the average FIT value of 0.535. In addition, from Fig. 7(a), we can see
that four cost-sensitive-based techniques (including AsymB, CSDT, AdaUB, and CSSVM)
belong to the top SKESD ranking group in which AsymB ranks the first and has significant
differences compared with other baselines in terms of FIT .

Second, in terms of FOT from Table 10 and Fig. 6(b), we can observe that, two
cost-sensitive-based techniques (including AsymB and AdaUB) achieve better prediction
performance, i.e., the average FOT value of 0.933, among all 8 studied cost-sensitive-
based techniques, while one technique (i.e., AdaC) obtains the worst prediction performance

Table 12 The average AUC value of each cost-sensitive-based technique

Method Codec Collections IO Jsoup JSqlParser Mango Ormlite

AdaC 0.710 0.764 0.839 0.728 0.626 0.542 0.881

AdaUB 0.680 0.802 0.818 0.686 0.790 0.787 0.876

AsymB 0.686 0.802 0.817 0.691 0.814 0.771 0.878

CSNN 0.657 0.724 0.810 0.610 0.819 0.684 0.773

CSLR 0.743 0.759 0.828 0.741 0.832 0.829 0.795

CSDT 0.755 0.846 0.811 0.716 0.750 0.820 0.891

CSRF 0.691 0.761 0.808 0.663 0.827 0.767 0.778

CSSVM 0.752 0.783 0.849 0.751 0.792 0.792 0.815
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Fig. 6 Box plot of average value of each cost-sensitive-based technique among all projects in terms of all
four indicators
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Fig. 7 SKESD rank of each cost-sensitive-based technique across all projects in terms of all four indicators
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with the average FOT value of 0.621. In addition, from Fig. 7(b), we can see that two
cost-sensitive-based techniques (including AsymB and AdaUB) belong to the top SKESD
ranking group in which AsymB ranks the first and has significant differences compared
with other baselines in terms of FOT .

Third, in terms of MCC from Table 11 and Fig. 6(c), we can observe that, two
cost-sensitive-based techniques (including AsymB and AdaUB) achieve better prediction
performance, i.e., the average MCC value of 0.626 and 0.622 respectively, among all 8
studied cost-sensitive-based techniques, while one technique (i.e., AdaC) obtains the worst
prediction performance with the average MCC value of 0.425. In addition, from Fig. 7(c),
we can see that two cost-sensitive-based techniques (including AsymB and AdaUB) belong
to the top SKESD ranking group in which AsymB ranks the first and has significant
differences compared with other baselines in terms of MCC.

Fourth, in terms of AUC from Table 12 and Fig. 6(d), we can observe that, three cost-
sensitive-based techniques (including CSDT, CSSVM, and CSLR) achieve better prediction
performance, i.e., the average AUC value of 0.798, 0.791, and 0.790 respectively, among
all 8 studied cost-sensitive-based techniques, while one technique (i.e., CSNN) obtains
the worst prediction performance with the average AUC value of 0.725. In addition, from
Fig. 7(d), we can see that one cost-sensitive-based technique (i.e., CSDT) belongs to the
top SKESD ranking group and has significant differences compared with other baselines in
terms of AUC.

Fifth, by analyzing Tables 9–12, Figs. 6(a)-(d), and 7(a)-(d), we can find that, the cost-
sensitive-based technique AsymB achieves the best prediction performance and ranks the
first in the SKESD ranking groups in terms of three indicators except for AUC, while
another technique AdaC constantly obtains the worst prediction performance. In addition,
one technique CSDT obtains the best prediction performance when treating the AUC as
evaluation indicator.

Answer to RQ3

The cost-sensitive-based technique AsymB achieves better prediction performance
under the imbalance dataset in terms of , , andMCC indicators. In addition,
when choosing the AUC as evaluation indicator, the cost-sensitive-based classifier,
such as CSDT, can be the best choice.

4.4 RQ4: How Different Imbalanced Learning Techniques Impact the Performance
of Crashing Fault Residence PredictionModels in Cross-project Scenario?

As the labeled data are not always available for newly developed project in real world, prac-
titioners always resort the history labeled data to build the classification model to meet the
requirements. The main goal of this question is to investigate the prediction performance
of different imbalanced learning techniques under cross-project scenario for crashing fault
residence prediction models. According to the analysis in RQ1, RQ2, and RQ3, we have
found that (1) the DT classifier without any imbalance process obtains better prediction
performance among all studied sampling-based techniques; (2) the ensemble-based tech-
niques, such as OBag and UBag, perform better than other comparative methods; and (3) the
cost-sensitive-based techniques, such as AsymB and CSDT, obtain better prediction perfor-
mance than other cost-sensitive-based methods. Based on the above observations, we select
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Table 13 The average FIT value
of each baseline technique in
cross-project scenario

Project OBag UBag AsymB CSDT DT

Codec 0.279 0.356 0.204 0.356 0.369

Collections 0.100 0.396 0.189 0.141 0.183

IO 0.705 0.724 0.448 0.681 0.530

Jsoup 0.147 0.385 0.203 0.289 0.232

JSqlParser 0.000 0.006 0.042 0.000 0.015

Mango 0.153 0.257 0.342 0.213 0.177

Ormlite-Core 0.739 0.851 0.564 0.640 0.479

Average 0.303 0.425 0.285 0.331 0.284

Table 14 The average FOT value
of each baseline technique in
cross-project scenario

Project OBag UBag AsymB CSDT DT

Codec 0.849 0.845 0.832 0.802 0.802

Collections 0.890 0.876 0.882 0.751 0.777

IO 0.939 0.936 0.906 0.912 0.829

Jsoup 0.893 0.884 0.874 0.850 0.737

JSqlParser 0.950 0.882 0.832 0.936 0.483

Mango 0.939 0.885 0.907 0.862 0.839

Ormlite-Core 0.931 0.950 0.901 0.888 0.785

Average 0.913 0.894 0.876 0.857 0.750

Table 15 The average MCC
value of each baseline technique
in cross-project scenario

Project OBag UBag AsymB CSDT DT

Codec 0.307 0.306 0.192 0.186 0.194

Collections 0.164 0.287 0.157 −0.105 −0.038

IO 0.688 0.675 0.456 0.594 0.380

Jsoup 0.193 0.292 0.134 0.150 −0.014

JSqlParser −0.001 −0.088 −0.096 −0.050 −0.354

Mango 0.105 0.200 0.287 0.142 0.094

Ormlite−Core 0.692 0.801 0.531 0.530 0.276

Average 0.307 0.353 0.237 0.207 0.077

Table 16 The average AUC
value of each baseline technique
in cross-project scenario

Project OBag UBag AsymB CSDT DT

Codec 0.578 0.599 0.547 0.577 0.583

Collections 0.524 0.623 0.543 0.443 0.479

IO 0.775 0.799 0.646 0.796 0.714

Jsoup 0.537 0.618 0.542 0.565 0.492

JSqlParser 0.500 0.443 0.431 0.486 0.203

Mango 0.546 0.654 0.684 0.614 0.579

Ormlite-Core 0.801 0.903 0.698 0.755 0.650

Average 0.609 0.663 0.584 0.605 0.529
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these five superior techniques as baselines to investigate how these techniques perform for
crashing fault residence prediction task under cross-project scenario.

To meet the cross-project setting, in this question, we separately treat each project as
the target project in turn and the remainder six projects are merged to form the candidate
source project. We train each imbalanced learning model on the source project and test it
on the target project. We repeat this experiment 10 times to reduce the deviation and report
the results in Tables 13, 14, 15 and 16 in terms of four indicators, respectively. In addition,
we employ the SKESD test to these results and analyze the ranks of the five techniques in
terms of each evaluation indicator. From these four tables and the figure, we can draw the
following findings:

First, in terms of FIT from Table 13, we can find that, UBag achieves better average
FIT value on 4 out of 7 cross-project scenarios compared with other 4 baseline methods.
The average FIT by UBag obtains performance improvements by 40.3%, 49.1%, 28.4%,
and 49.6% compared with OBag, AsymB, CSDT, and DT, respectively. UBag obtains the
best average FIT value of 0.425 and achieves an average improvement by 41.9%. In terms
of FOT from Table 14, we can find that, OBag achieves better average FOT value among
all 7 cross-project scenarios compared with other 4 baseline methods. The average FOT

by OBag obtains performance improvements by 2.1%, 4.2%, 6.5%, and 21.7% compared
with UBag, AsymB, CSDT, and DT, respectively. OBag obtains the best average FOT value
of 0.913 and achieves an average improvement by 8.7%. In terms of MCC from Table 15,
we can find that, UBag achieves better average MCC value on 3 out of 7 cross-project
scenarios compared with other 4 baseline methods. The average MCC by UBag obtains
performance improvements by 15.0%, 48.9%, 70.5%, and 358.4% compared with OBag,
AsymB, CSDT, and DT, respectively. UBag obtains the best average MCC value of 0.353
and achieves an average improvement by 123.2%. In terms of AUC from Table 16, we can
find that, UBag achieves better average AUC value on 5 out of 7 cross-project scenarios
compared with other 4 baseline methods. The average AUC by UBag obtains performance
improvements by 8.9%, 13.5%, 9.6%, and 25.3% compared with OBag, AsymB, CSDT,
and DT, respectively. UBag obtains the best average AUC value of 0.663 and achieves an
average improvement by 14.3%.

Second, the ensemble-based techniques, such as UBag and OBag, always obtain better
prediction performance even under the cross-project setting, while the basic DT classifier
constantly achieves the worst prediction performance. According to Fig. 8, we can find that,
UBag ranks the first and has significant differences compared with other baselines in terms
of FIT , MCC, and AUC, while OBag ranks the first and performs better than others in
terms of FOT . In addition, when treating the project JSqlParser as the target project, all the
five models obtain worse prediction performance. It implies that the project data itself has
a certain impact on the performance of crashing fault residence prediction models as shown
in previous work (Zhao et al. 2021b).

Answer to RQ4

Two ensemble-based imbalanced learning techniques UBag (with , MCC,
and AUC indicators) and OBag (with indicator) achieve better prediction
performance for crashing fault residence prediction task under the cross-project
scenario.



Empir Software Eng           (2023) 28:49 Page 31 of 45   49 

Fig. 8 SKESD rank of the five imbalanced learning techniques in cross-project scenario in terms of all four
indicators
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4.5 RQ5: How Does Imbalance Level of the Crash Data Impact the Performance
of Imbalanced Learning Techniques?

Since the imbalance rate varies among different projects as shown in Table 3, in this research
question, we explore the impact caused by the imbalance rate (i.e., imbalance level) of the
crash data on different imbalanced learning techniques.

Based on the above observation from RQ1-RQ4, we also select the five superior tech-
niques (including OBag, UBag, AsymB, CSDT, and DT) as baselines to investigate how
does the imbalance level of the crash data impact the performance of these techniques for
crashing fault residence prediction task in this question. We first treat all the 7 projects as a
whole and manually choose ten different IR settings (from 1 to 10 with the increment of 1)
to split this whole dataset. More specifically, we randomly select 200 crash instances with
label FIT and randomly select a certain amount of crash instances with label FOT to meet
distinct IR settings. For example, we randomly select 1000 crash instances with label FOT

under the IR of 5 and these 1200 crash instances are treating as the training set and the
remainder is as the test set. This process is repeated 10 times to reduce biases.

To facilitate the understanding, we plot the line chart of IR. More specifically, we take
the ordered imbalance level, i.e., IR, as the x-axis and the corresponding average prediction
results for each technique as y-axis. Figure 9 demonstrates the line charts in terms of four
indicators. From this figure, we can draw the following findings:

Fig. 9 Line chart of average value of the five imbalanced learning techniques under different imbalance
levels in terms of all four indicators
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Obviously, the prediction performance of each imbalanced learning technique varies
among different IR settings. Two variants of the bagging technique (including UBag and
OBag) always obtain the best prediction performance compared with other baselines in
terms of four indicators, in which UBag can still achieve excellent results, i.e., FIT of 0.819,
FOT of 0.941, MCC of 0.762, and AUC of 0.869, even under the extremely imbalance level
(i.e., IR = 10). These two techniques seem to be insensitive to the imbalance level because
they suffer from relatively small fluctuations as shown in Fig. 9. According to the definition
of IR, the larger IR value means more negative crash instances. When applying the under-
sampling technique, the redundant negative crash instances are removed randomly but the
positive ones remain unchanged. Although this operation alters the proportion of the positive
crash instances, the number of truly positive ones stay the same. As a result, the confusion
matrix occurs a smaller variation, especially the term TP, which brings a slight impact on the
performance indicators. On the other hand, cost-sensitive-based technique AsymB and the
DT classifier are seriously affected by different imbalance levels. They always obtain rela-
tively better performance with lower imbalance levels (i.e., IR < 4). As the growth of the
imbalance level, their predictive performance drops. In addition, the performance of CSDT
constantly increases according to the rise of IR in terms of FIT , FOT , and MCC, while
CSDT performs stable in terms of AUC.

Answer to RQ5

The performance of the five imbalanced learning techniques for crash fault res-
idence prediction task is affected by different imbalance levels, in which the
UBag technique obtains better and relatively stable performance even though the
imbalance level changes.

5 Discussion

5.1 Implications

Our empirical study reveals the following practical guidelines when building crashing fault
residence prediction models using the class imbalance techniques.

Implications for Developers First, since most of the crashing faults located in stack traces,
developers can mainly focus on analyzing the information stored in the stack trace and treat
them as a guide to improve code quality. Second, based on our findings from experiments,
developers can identify more crashing faults using suitable class imbalancing techniques
(such as OBag and UBag). Then, developers can spend fewer efforts to recognize the cor-
responding source code and fix such bugs. Third, we found that although the prevalence of
class imbalanced issues, the proportion of crash instances located inside the stack traces is
still not negligible. Because of the potential impacts introduced by the different proportions
between distinct classes, the handling of crash instances with inherent imbalanced issues
cannot be ignored by developers. According to our experiments, developers can choose
some applicable class imbalancing techniques (such as UBag and OBag) to deal with such
issues. Fourth, when the history data of the newly developed project is not available, devel-
opers can train effective cross-project models based on the data from other projects because
such models are more useful in practice. Under such scenario, the under-sampling-based
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bagging technique UBag can be an optional solution building predictive models to identify
crashing faults.

Implications for Researchers First, the over-sampling-based bagging technique OBag is
advantageous when researchers expect to improve the ability of crashing fault residence
prediction models (such as FIT , FOT , and MCC), while the under-sampling-based bag-
ging technique UBag is beneficial for the same purpose in term of AUC. The ensemble
techniques indeed increase the ability to identify crashing faults and are more stable under
the changes of imbalance levels of crash data. Thus, we recommend adopt ensemble tech-
niques to build the crashing fault residence prediction model when predictive performance
is the major concern. Second, simply altering the number or changing the weights of crash
instances should be avoided when developing crashing fault residence prediction models.
Such imbalanced learning techniques (such as DT, AsymB, and CSDT) are sensitive to the
imbalance levels and impact the stability and predictive results of the models. Third, we
explore the classification performance of imbalanced techniques that achieve better results
in the same project under cross-project scenarios. As our paper is the first large-scale empir-
ical study on this problem, further works are needed on exploring the impacts of different
techniques on cross-project scenarios.

5.2 Error Analysis

To further analyze our experimental results, we demonstrate the actual confusion matrix of
three representative techniques (including OBag and UBag, AsymB) in Table 17. Note that
we treat crash instances with label FIT as positives. We choose these three techniques for
example because they show better prediction performance for identifying crashing faults
as shown in Section 4. From this table, we can find that the cost-sensitive-based technique
(i.e., AsymB) produces larger false negatives across nearly all 7 projects due to the weight
changes of different classes. Although AsymB holds smaller false negatives, it will pre-
vent quality maintenance practitioners from identifying actual residence of crashing faults
because finding the crashes is more important for them in reality. Although OBag and UBag
have closer false negatives, OBag shows smaller false postives across all projects. This is
because OBag inherently uses the over-sampling technique that generates more positive
instances based on the original positive instances and thus the implicit information from
original positive instances is fully utilized. In addition, taking the extremely imbalanced
project Mongo (IR = 12.83) as an example, we can see that all the three techniques achieve

Table 17 The actual confusion matrix of three representative techniques

Project UBag OBag AsymB

TP FP TN FN TP FP TN FN TP FP TN FN

Codec 70 37 180 19 69 22 195 20 44 23 194 45

Collections 108 55 484 29 100 19 520 37 82 16 523 55

IO 66 34 235 9 65 22 247 10 50 10 259 25

Jsoup 36 34 207 24 26 10 231 34 29 11 230 31

JSqlParser 25 22 271 6 18 4 289 13 18 3 290 13

Mongo 20 21 319 7 18 2 338 9 16 2 338 11

Ormlite-Core 144 21 468 19 141 11 478 22 130 17 472 33
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lower false positive rates, which implies that the imbalance learning techniques are helpful
for developers to identify more crashing faults.

5.3 Threats to Validity

Threats to Internal Validity This kind of threats mainly focuses on the potential faults
in our coding implementation. To dispose such threats, in this work, we make full
use of the off-the-shelf implementation provided by the third-part libraries, including
scikit-learn, imbalanced-learn, and imbalanced-ensemble, with the default parameter set-
tings, to implement the studied 19 sampling-based and 18 ensemble-based imbalanced
learning techniques.

Threats to External Validity This kind of threats mainly lies in the representative of the
used benchmark dataset used in our work. To relieve such threats, we adopt seven publicly-
available Java projects released by the pervious study. These projects come from different
Java application scenarios and with diverse imbalance levels, which ensures the generaliza-
tion of our experimental results to some extent. These open-source projects also allow other
researchers to verify our experimental results or to do further analytical invesitigation.

Threats to Construct Validity This kind of threats mainly concentrates on the reasonability
of the used performance evaluation indicators and the statistical test method. To deal with
such threats, we utilize four measurement indicators, including FIT , FOT , MCC, and AUC,
to assess the performance of the studied class imbalance techniques. In addition, we employ
the state-of-the-art SKESD test to conduct the significant difference analysis on experiment
results. The above selections can make our experiments more comprehensive and rigorous.

Threats to Conclusion Validity This kind of threats mainly fastens on the data analysis
process. To deal with such threats, we adopt the heatmaps to elaborate our results instead of
tables due to the large-scale indicator values for each technique on each project in RQ1. For
RQ2 and RQ3, we elaborate tables and the corresponding boxplots to detailedly and vividly
display the comparison results. We also employ the SKESD test that has the advantage
of holding the rank of each compared technique among all projects to express our results,
which makes the results more rigorous and intuitive.

6 RelatedWork

6.1 Stack Trace Analysis

Since our work resorts the stack trace information for data collection and analysis, we first
present the related studies based on the stack trace. The starting point lies in Schroter et al.
(2010), which conducted experiment analysis on Eclipse project and empirically indicated
that the stack trace information was very helpful to programming practitioners when debug-
ging. Subsequently, researchers mainly focused on using such information for reproducing
crashes (such as STAR (Chen and Kim 2014) andMuCrash (Xuan et al. 2015)) and assisting
developers for locating crashing faults (such as CrashLocator (Wu et al. 2014), BugLocator
(Wong et al. 2014), and Lobster (Moreno et al. 2014)).

Nayrolles et al. (2017) alleviated the requirement of code instrumentation and the con-
tent access of heap data. A hybrid technique called JCHARMING was proposed, which
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employed the stack trace producing when program exception occurred to assist the model
checking tool for replicating the crashes. Their experiments adopting 30 bugs showed that
JCHARMING replicated 80% of bugs with the shorter average time. Soltani et al. (2017)
modified environmental dependency constraints and path explosion in previous studies
when repreducing crashes. They proposed EvoCrash, an evolutionary search based method
that incorporated the novel guided genetic algorithm and also proposed the new fitness func-
tion to replicate crashes. Their experiments on 50 real-world crashes in different software
versions demonstrated that EvoCrash reproduced 82% of crashes in which 89% crashes
were helpful when debugging. Soltani et al. (2020) developed the JCrashPack, a scalable
benchmark for replicating crashes. They collected 200 crashes from seven actively main-
tained Java projects and employed the EvoCrash to evaluate the results. Their experiments
depicted that EvoCrash repreduced 43.5% of crashes. The analysis on failed reproductions
illustrated that the search-based crash replicating methods were more effective on real-wrold
crashes and the NullPointerExceptions could be replicated more easily.

Gong et al. (2014) developed a statistical fault localization approach that comprised
three parts: instrumentation and static analysis, passing and failing execution traces col-
lection, and locating crashing faults by distance re-weighting and test coverage adjustment
heuristics. Their experiments showed that this approach could successfully locate 63.9%
and 52.7% of crashing faults on Firefox 3.6 and Firefox 4.0 individually by only inspect-
ing 5% of functions. Wu et al. (2018) developed ChangeLocator to locate crash-inducing
changes at the commit level. This method first extracted 10 features to specify each
crash-inducing change and then constructed a classification model with logistic regression
classifier. Their experiments on six versions of NetBeans demonstrated that ChangeLocator
significantly performed better in terms of the mean reciprocal rank and the mean average
precision indicators.

Recently, some researchers focused on identifying whether the crashing faults located in
the stack trace or not (Gu et al. 2019; Xu et al. 2019b; Zhao et al. 2021b). This topic started
from Gu et al. (2019) who developed a benchmark dataset based on 89 features extracted
from the stack trace and fauly code for crashing fault residence prediction task but their
model only obtained inferior performance. Following this work, Xu et al. (2020) proposed
an imbalanced metric learning method IML, which decomposed all the crash instances into
four parts and adopted the Mahalanobis distance to enlarge the distance between crash
instances with discrepant labels and lessen those with the same label. Their experiments on
seven Java projects showed that IML performed better than 16 baseline methods. Zhao et al.
(2021a) proposed a new method ConDF that applied the consistency based feature selec-
tion technique to refine features and employed a simplified version of deep forest on the
reduced features to construct classification model for crashing fault residence prediction.
Their experimenst on seven open-source Java projects illustrated that ConDF outperformed
17 comparative methods in terms of three indicators.

In this work, we focus on the crashing fault residence prediction task. Different from
the above studies, our main aim is to explore how different imbalanced learning techniques
impact the performance of crashing fault residence prediction models.

6.2 Investigations of Class Imbalance Techniques

There were some comprehensive investigations about class imbalance techniques on the
impacts of prediction models in software engineering. He and Garcia (2009) explored
the research developments about imbalanced learning consisting of sampling techniques,
cost-sensitive learning techniques, kernel-based learning techniques, and active learning
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techniques. They also described the widely-used evaluation indicators under imbalance
datasets and specified some challenges and potential research directions for imbalanced
learning. Branco et al. (2016) investigated the related challenges when suffering data
imbalance issues. They categoried the existing techniques dealing with imbalanced issues
into four groups: data preprocessing, special-purpose learning techniques, prediction post-
processing techniques, and hybrid techniques. In software engineering field, previous
studies (Wang and Yao 2013; Tan et al. 2015; Agrawal and Menzies 2018; Bennin et al.
2019) investigated the impact of class imbalance issues on model performance but only with
small-scale datasets. To alleviate this shortcoming, Song et al. (2018) conducted a com-
prehensive investigation on the characteristics and impacts of class imbalance issues in the
software prediction task. Specifically, they empirically evaluated 27 datasets, seven classi-
fication models, seven types of software matrics, 17 imbalanced learning techniques, and
their interations in terms of three assessment indicators. Their experimental results showed
that most software prediction datasets are with low and medium levels of imbalance and
the selection of imbalanced learning techniques is crucial, in particular, powerful imbal-
aced learning techniques and sensitive classification models are more suitable. In addition,
Tantithamthavorn et al. (2018) empirically explored the impact of class rebalancing meth-
ods on the performance evaluation and interpretation of defect prediction models. More
specifically, they investigated the performance of five class rebalancing methods on seven
classifiers with 101 imbalanced datasets and 10 evaluation indicators. Their results illus-
trated that the optimized synthetic minority over-sampling technique and under-sampling
technique could acquire better AUC and recall values, but these two techniques should be
avoided when understanding the defect prediction models.

In this work, we concentrate on the impacts of class imbalance techniques. Different
from the above studies, we focus on investigating the impact of 42 imbalanced learning
techniques on the model performance for crashing fault residence prediction task. To the
best of our knowledge, we are the first to conduct such a large-scale empirical study to
explore this research topic.

6.3 Software Fault Prediction

Software fault prediction aims at identifying defective software components or modules,
which is a hotspot in software engineering and quality assurance. Nam et al. (2013) pro-
posed the TCA+ technique that made the feature distribution between source and target
projects similar for defect prediction under the cross-project scenario. The experimental
results demonstrated the superiority of TCA+. Jing et al. (2015) first proposed the unified
metric representation to process the defect data from source and target projects, and then
used canonical correlation analysis to build the classification model for fault prediction
under the cross-company scenario. Their results showed the effectiveness of the proposed
method for this task. Li et al. (2020) empirically analyze how the parameter optimization
of transfer learning techniques impact the performance of cross-project fault prediction
models. The experimental results give some useful insights about designing new defect pre-
diction models. Different from these traditional fault prediction task, researchers proposed
the just-in-time (JIT) defect prediction that can timely detect bug-inducing changes (Kamei
et al. 2012). Kamei et al. (2016) conducted an empirical study to explore how different JIT
models perform under the cross-project scenario. They found that the data should be care-
fully chosen to train the cross-project JIT prediction models. McIntosh and Kamei (2017)
explored whether the change-level properties stay the same with the evolution of systems.
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They trained JIT models based on six groups of change-level features and the results illus-
trated that these features fluctuated as systems evolve. Cabral et al. (2019) investigated the
impact of class imbalance issues on the performance of JIT fault prediction models and then
proposed a novel method for this purpose. Their results demonstrated the effectiveness of
such method. Catolino et al. (2017, 2019) took the first attempt to develop a JIT fault predic-
tion model in the context of Andriod mobile apps. They extracted six code change features
to build the predictive model and the results showed that Naive Bayes obtains the best per-
formance compared with other traditional classifiers. Followed by their work, researchers
further developed new JIT fault prediction models for Andriod mobile apps in different
aspects, such as feature learning (Zhao et al. 2021c) and cross-app settings (Xu et al. 2021).

Different from the above studies, in this work, we focus on the crashing fault res-
idence prediction task. We empirically explore how 42 different imbalanced learning
techniques impact the performance of crashing fault residence prediction models from
different perspectives.

7 Conclusion

Predicting the residence of crashing faults in the stack trace accurately can prioritize the
testing efforts to accelerate the software maintenance process. In this work, we conduct
a large-scale empirical study to investigate how different imbalanced learning techniques
(including 19 sampling-based, 15 ensemble-based, and 8 cost-sensitive-based techniques)
impact the model performance for crashing fault residence prediction task using four perfor-
mance indicators on seven open-source Java projects. We employ the SKESD test to analyze
our experiment results. In addition, we explore the impact of imbalance level of the crash
data on the performance of crashing fault residence prediction models. The main findings
are listed as follows:

– For the sampling-based imbalance learning techniques, the DT (Decision Tree) clas-
sifier without any imbalance treatment performs better than other sampling-based
techniques, which implies that the sampling-based techniques do not always work when
dealing with the class imbalance issues for the crashing fault residence prediction task.
This finding is consistent with the previous studies (Gu et al. 2019; Zhao et al. 2021b)
which also demonstrated that the decision tree based model existed superiority on this
task.

– For the ensemble-based imbalance learning techniques, one variant of the bagging clas-
sifier, i.e., OBag (Over-sampling with Bagging) achieves better performance in terms
of FIT , FOT , and MCC indicators, whereas another variant of the bagging classifier,
i.e., UBag (Under-sampling with Bagging) obtains better prediction performance with
the AUC indicator. This implies that the imbalanced variants of the bagging classifier
are suitable for the crashing fault residence prediction task.

– For the cost-sensitive-based imbalance learning techniques, one technique AsymB
(Asymmetric adaptive Boost) achieves better performance in terms of FIT , FOT , and
MCC indicators, whereas another technique CSDT (Cost-Sensitive Decision Tree)
obtains better prediction performance with the AUC indicator.

– The ensemble-based imbalanced techniques, such as UBag (Under-sampling with Bag-
ging) and OBag (Over-sampling with Bagging), perform better than other sampling-
based or cost-sensitive-based imbalanced techniques for crashing fault residence
prediction in the within-project scenario. Thus, we recommend that developers can
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adopt ensemble-based techniques to build their predictive models under within-project
settings.

– Two imbalanced variants of the bagging technique, including UBag (Under-sampling
with Bagging) and OBag (Over-sampling with Bagging), still perform better for crash-
ing fault residence prediction task under cross-project scenario settings. These two
techniques stably outperforms other comparative methods under different imbalance
levels. Thus, we recommend using them to construct the crashing fault residence
prediction model when the imbalance level of the crash data is unknown.

In the future, we plan to collect more real-world crash data and explore crashes derived
from other programming languages, such as Python, to enrich our experiments. We will
revisit our results in other specific scenarios and explore other evaluation models and per-
formance indicators. In addition, we will explore the impacts of the investigated techniques
in practice.
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