
Revisiting the Correlation Between Alerts and
Software Defects

A Case Study on MyFaces, Camel, and CXF

Meng Yan1, Xiaohong Zhang1, Ling Xu1, Haibo Hu1, Song Sun1, Xin Xia2
1School of Software Engineering, Chongqing University, Chongqing, China
2Department of Computer Science, University of British Columbia, Canada

Email: {meng.yan, xhongz, xuling, hbhu, SongSun }@cqu.edu.cn, xxia02@cs.ubc.ca

Abstract—Static analysis tools (e.g., FindBugs) are widely used
to detect potential defects in software development. A recent
study suggests that there is a moderate correlation between the
alerts reported by static analysis tools and software defects [1].
However, despite the actionable alerts reported by static analysis
tools, they may report too many meaningless unactionable alerts.
Actionable alert refers to the alert which is meaningful and
fixable. Unactionable alert (i.e., false positive alert) refers to the
alert which is regarded as unimportant to developers, inessential
to source code, or will not be fixed by developers. Are all alerts
(including both actionable and unactionable alerts) suitable for
indicating software defects? To address this question, we classify
all the alerts into two categories, namely actionable alerts and
unactionable alerts. By the following, we conduct an empirical
study to evaluate the degree of correlation between defects and
alerts on the evolution of three open source projects with totally
40 releases. The objective of the study is to explore two kinds of
correlation analysis: one is the correlation between all the alerts
reported by FindBugs and defects among the release history of a
project, the other is the correlation between the actionable alerts
and defects. As a result, we find that not all the alerts but the
actionable alerts are suitable to be an early predictor of defects.

Index Terms—software alert, actionable alert, unactionable
alert, software defect

I. INTRODUCTION

Static analysis tools (e.g., FindBugs [2]) have been widely

used to detect potential bugs in software systems [3], [4]. Usu-

ally, static analysis tools work by analyzing a system without

execution. They search for code violations in recommended

programming practices from fixed program representations,

such as source code, generated or compiled code, and abstrac-

tions or models of the system [5]. An alert is a potential code

violation reported by static analysis tools, such as null pointer

references, buffer overflows, and style inconsistencies [6].

Although static analysis tools are effective in some settings,

it is not sure whether the reported alerts are actionable. Past

studies refer to this problem as false positives, i.e., alerts on the

defects which do not exist [7], [8]. Specifically, if a developer

determines a alert is meaningful and fixable, we refer to it

as an actionable alert. If an alert is a false positive which

is regarded unimportant to developers, inessential to source

code or will not be fixed by developers, we refer to it as an

unactionable alert [6], [9], [10], [11].

There is a growing interest in using alerts reported by static

analysis tools as an early predictor of software defects [1]

(the term “defect” in this study refers to the post-release

defect or field defect which is same to the work by Thung

et al. [8] and Couto et al. [1]). It is reported that there is

a moderate correlation between defects and alerts reported

by FindBugs [1]. However, whether the unactionable alerts

have a correlation with filed defects is rarely investigated.

The investigation on the impact of unactionable alerts is

motivated by the following two aspects. On the one hand,

the unactionable alerts do not help to indicate code quality

by developers and quality assurances (QAs), and they need to

waste on average 5 minutes to review an unactionable alert.

On the other hand, among the huge number of static alerts, 35-

91% of them are unactionable alerts [6], which would hinder

the practical usage of these static analysis tools [12], [13].

Intuitively, more source code static alerts indicate that more

potential defects may be contained in the software, and it

is useful for developers and QAs to take advantage of the

quantity of alerts to estimate the number of defects. Couto

et al. discovered that there is a correlation between all the

FindBugs alerts and defects among 30 systems [1]. Despite

the insight they provided, there are two issues which still

remain: (1) they investigate relationship between all the alerts

and the defects. Whether the unactionable alerts are suitable

for indicating defects is not addressed; (2) the datasets they

used are single releases of different projects. As a result,

they reported a correlation analysis among 30 projects which

contain one single release in each project. The correlation

analysis among the releases history of one project is missing.

However, a typical defect prediction model is often built by

learning from the past data from the previous releases within

a project. Thus, the correlation analysis among the releases

history of one project is needed.

In this paper, we revisit the correlations between alerts

and software defects. Different from Couto et al.’s study,

we classify alerts into two categiries: actionable alerts and

unactionable alerts, and we investigate the correlation be-

tween actionable alerts and unactionable alerts, and defects.

Moreover, we choose the continued releases of projects to

investigate the correlation between the alerts and defects

among the release history of a project. As Figure 1 shows, we

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.201

103

Fig. 1. Overall framework of our empirical study.

first collect a total of 40 releases from 3 open source projects

(i.e., MyFaces, Camel, CXF) by mining their version control

systems (e.g., SVN and Git). Second, we detect the alerts

by use static analysis tool and classify them into actionable

alerts and unactionable alerts. Third, we collect the defect data

from their corresponding issue tracking systems (e.g., JIRA

and Bugzilla). Finally, we perform the correlation analysis

between alerts and defects. Our empirical study find that there

is no significant correlation between the number of all (and

unactionable) alerts and defects in terms of sequential project

releases, and there is a statistically significant correlation

between actionable alerts and defects.

The main contributions of the paper are as follows:

• We revisit the problem of the correlation degree com-

parison between actionable and unactionable alerts, and

defects.

• We conduct an empirical study on three open source

projects with totally 40 releases. The statistical analysis

results show that the correlations between all and unac-

tionable alerts, and defects are not significant, and there is

a strong correlation between actionable alerts and defects.

The remainder of this paper is organized as follows: We

present the empirical study data in Section 2. Section 3

describes the empirical study setup and Section 4 presents the

empirical study results. In Section 5, we describe our related

work. Finally, we draw a conclusion and present the future

plan in Section 6.

II. EMPIRICAL STUDY DATA

In this section, we describe the data used in this study in

detail. First, we select mature open source projects with many

releases. Second, we run the FindBugs to detect the alerts in

each release. Third, we retrieve the defects of each release

form the related issue tracking system (i.e., JIRA).

A. Selected Projects

Three projects are chosen from the Apache Foundation to

collect the data needed in our research, namely MyFaces Core,

Camel and CXF. We select the projects by considering the

following criteria: (a) represent large-sized and mature project;

(b) have a series of sequential releases; (c) open source, i.e.,

the version control system is accessible; (d) uses the issue

TABLE I
SUMMARY OF THE ADOPTED PROJECTS

Project Start End Date number of
releases

Description

MyFaces
Core

2.1.0 2.1.15 29/05/2011-
22/05/2014

16 JSF imple-
mentation

Camel 2.9.0 2.9.7 31/12/2011-
20/09/2013

8 Integration
framework

CXF 2.6.0 2.6.15 17/04/2012-
21/10/2014

16 Web service
framework

tracking system to record their defects. Table I presents the

summary about the target projects and the sequential chosen

versions in each project.

Additionally, a series of sequential releases, such as a series

of 2.1.x released versions in MyFaces Core, are chosen from

each project. We choose the historical releases for following

reasons: (a) releases help to retrieve more accurate quantity of

defects based on the search strategy we use; (b) sequential re-

leases are required when we classify the alerts into actionable

alerts and unactionable alerts.

B. Alerts Detection

FindBugs can find potential code errors by detecting bug

patterns which are code idioms with errors [2]. We chose

FindBugs as our analysis tool mostly because it is applied

by many big IT firms like Google [13] and alerts reported

by FindBugs are more relevant than PMD [14]. Additionally,

developers can configure FindBugs to report high, medium,

and low priority alerts. Due to the evidence provided by

a study made by Couto et al. [1], which shows that there

is a stronger connection between medium-priority alerts and

defects than the connection between high-priority alerts and

defect among FindBugs alerts. Thus, we apply the FindBugs

tool with the medium-priority setting (which also is the default

setting) to our experimental releases. The results of static

analysis of FindBugs for each release are presented in XML

files, from which we can easily obtain the number of alerts of

each release and can easily parse out alert characteristics of

each alert needed in the following alert classification process.

C. Defect Retrieving

In the JIRA issue tracking system, an issue is recorded with

many labels like “issuetype”, “status”, “assignee” etc. Same to

the work of [1], we refer the issue with label “issuetype = Bug”

as a defect, and to assure that a defect exists we require that it

is repaired by a developer in a specific release with the label

“resolution = Fixed”. We access JIRA to achieve the objective

of collecting the number of defects in each release using the

following search strategy. The strategy uses the number of

fixed bugs found in the release after the current release, as the

number of defects in the current release. For example, if we

want to obtain the number of defects in the MyFaces Core

2.1.0, we count the number of bugs fixed in MyFaces Core

2.1.1, the search string is “issuetype = Bug AND resolution =

Fixed AND fix version = 2.1.1”. Then we iterate this method

through the releases chosen as the experimental samples in the

selected project, to get the number of defects in each release.

104

III. EMPIRICAL STUDY SETUP

In our study, we are going to revisit the problem of the corre-

lation degree comparison between actionable and unactionable

alerts, and defects in terms of the release history within a

specific project. In summary, our empirical study process

consists of four phases. In the first phase, we use the JIRA

bug tracking system to collect defects. In the second phase,

we adopt the FindBugs to detect alerts. In the third phase, we

classify all the alerts into actionable alerts and unactionable

alerts. In the fourth phase, we conduct two correlation analysis.

The first one is to investigate the correlation between the

actionable alerts and defects, the second one is to investigate

the correlation between all the alerts and defects. The first

phase and second phase have been shown in previous section.

In this section, we describe the third and fourth phase in

detail. Furthermore, we formalize our study in two research

questions:

RQ1: Do release with more alerts contain more defects
in terms of the release history in a project?

RQ2: Are actionable alerts more appropriate than all
the alerts for indicating defects?

A. Alerts Classification

The objective of this section is to classify all the alerts

into actionable alerts and unactionable alerts. To achieve this

objective, we adopt the alert classification method introduced

by Heckman et al. [11] and propose a new classification

method based on the difference between neighbor releases.

The basic thinking in their study is that it classifies the alerts

which are in a prior revision but not reported in a later

revision as actionable alerts, and marks the remaining alerts as

unactionable. Different from their work, we classify the alerts

according the difference between releases instead of revisions.

The overview of our classification method is shown in

Figure 2. Release 1, Release 2, and Release n represent

sequential releases of a specific project, and the stripe graph

is a set of FindBugs alerts which are detected in a release.

If an alert exists in the current release, but disappears in

the next release, we classify the alert as an actionable alert.

Otherwise, we classify it as unactionable alert which indicate

the alert still exists in the next release. We use the black square

represents an actionable alert and the white square represents

an unactionable alert.

In summary, there are three aspects differing from the

classification manner of Heckman et al [11]: (a) we use

sequential releases rather than revisions of each project; (b)

alerts disappearing by file deletion also regarded as actionable,

since file deletion may also be an approach of fixing errors by

refactoring; (c) we do not consider an alert reopening situation,

a reopening alert is a new alert (gray) in our experiment. In

this way, we check all of alerts in the current release to count

the number of actionable alerts of the current release. Then

we iterate through the releases of each project to get the data

about actionable alerts in each release used in our study.

Fig. 2. Overview of the alerts classification method in this study

B. Statistics Factors Studied

After collecting the quantity of alerts, actionable alerts,

defects, and the lines of code in each release, we normalize the

number of alerts and defects by dividing the KLOC (i.e., Kilo

Lines of Code) in order to avoid the impact of project size.

The normalized alerts and defects are named as alert density

and defect density respectively. By the following, we conduct

the correlation analysis between the actionable alert density

and defect density in each project.

Using the data collection method presented in Section II, we

get the data statistics about defects, alerts, actionable alerts,

and lines of code in each of the releases of the target projects,

including the detailed releases in each project, the number

of defects in each release, the number of alerts reported by

FindBugs (Alert), the number of actionable alerts (AAlert)

found by the proposed classification method, and the number

of thousands of lines of code (KLOC). By dividing with

KLOC, we get the defect density (Defect Density), alert

density (Alert Density), unactionable alert density (UAlert

Density) and actionable alert density (AAlert Density).

IV. EMPIRICAL STUDY RESULTS

A. RQ1 Results

Motivation: Previous research suggests that there is a mod-

erate correlation between alerts and defects among various

projects. However, whether the same correlation exists in

the release history of a single project is not addressed. The

motivation is that developers and quality managers can obtain

the data about alerts and defects of the previous releases in

a project. If there is a statistical correlation between alerts

and defects in a specific projects release history, they can use

the number of alerts as the indicator to estimate the quantity

of post-release defects in projects before they are released.

Otherwise, it is impractical to use the correlation to predict

the number of defects in next release.

Approach: We use the Spearman’s rank correlation coefficient

which does not require the normality of test data. Spearman’s

rank correlation coefficient is a statistical measure to discover

105

TABLE II
DATA ANALYSIS OF THE DENSITY OF DEFECT, ALERT AND AALERT

MyFaces Core Camel CXF
Defect
Density

Alert
Density

UAlert
Density

AAlert
Density

Defect
Density

Alert
Density

UAlert
Density

AAlert
Density

Defect
Density

Alert
Density

UAlert
Density

AAlert
Density

Max 1.0970 6.7653 6.7653 2.5738 0.6678 4.4657 4.4190 0.1336 0.3031 5.3081 5.2383 0.1174
Min 0.0556 4.9377 4.1771 0.0000 0.0000 4.3461 4.3321 0.0000 0.0048 5.1412 5.1315 0.0000

Mean 0.2487 5.4591 5.2632 0.1959 0.3024 4.4000 4.3633 0.0366 0.1542 5.2035 5.1736 0.0299
Std. Deviation 0.2716 0.5541 0.5498 0.6403 0.2106 0.0455 0.0324 0.0468 0.0937 0.0479 0.0327 0.0358

Skewness 2.482 1.693 0.810 3.878 0.225 0.517 0.562 1.550 0.093 0.697 0.624 1.533
Std.Error 0.564 0.564 0.564 0.564 0.752 0.752 0.752 0.752 0.564 0.564 0.564 0.564

TABLE III
SPEARMAN’S CORRELATION AND CORRELATION LEVEL

Correlation coefficient Correlation level
0.0-0.1 None
0.1-0.3 Small
0.3-0.5 Moderate
0.5-0.7 High
0.7-0.9 Very High
0.9-1 Perfect

the degree of correlation between paired data [15]. The cor-

relation coefficient is between −1 and 1, and the paired data

has a stronger monotonic relationship when the absolute value

of coefficient is closer to 1. In detail, Table III describes the

various correlation coefficient ranges and the corresponding

correlation levels [16]. In our experiment, through the SPSS

statistical tool, we calculate the correlation coefficients for the

projects MyFaces Core, Camel, and CXF. We first calculate

the alert density (Alert Density) and defect density (Defect

Density). Then, we calculate the correlation coefficients with

significance level between alert density (Alert Density) and

defect density (Defect Density). In addition, since we run the

test many times, we also conduct the Bonferroni correction

[17] to counteract the results of the correlation analysis.

Results: We compute four variables of density in each release

for MyFaces Core, Camel, and CXF, i.e., Defect density, Alert

density, AAlert density and UAlert density as Table II shows.

The following statistical values are included: maximum, min-

imum, mean, standard deviation, skewness, and standard error

value. The values of skewness and standard error will be used

to select the type of correlation test when we calculate the

correlation coefficient between the three variables. From the

results of Table II, we conclude that:

• The defect density (Defect Density) range from 0.2487±
0.2716, 0.3024 ± 0.2106, and 0.1542 ± 0.0937 in the

experimental releases of projects MyFaces Core, Camel,

and CXF respectively.

• The density of FindBugs default alert (Alert Density) is

smooth relatively, and each release for MyFaces Core,

Camel, and CXF has the value between 5.4591±0.5541,

4.4000± 0.0455, and 5.2035± 0.0479 respectively.

• The actionable alert density (AAlert Density) in each re-

lease is found to be very small, and the values range from

0.1959± 0.6403, 0.0366± 0.0468, and 0.0299± 0.0358
for projects MyFaces Core, Camel and CXF, respectively.

In addition, Table IV presents the results of Spearman

test, the values ρ of second column (Alert Density) are

correlation coefficients and the corresponding correlation level

(corr level) between alert density and defect density. Note that

we use the Bonferroni correction to counteract the results of

multiple comparisons, therefore the p-value are adjusted. In de-

tail, we consider the correlation test is statistically significant

at the confidence level of 95% if the adjusted p-value is less

than 0.05. Considering the coefficients between defects and

alerts, the Camel project has the maximal value 0.738, while

the MyFaces Core project has a negative value 0.132 which

runs against the intuition of the developer. Notice that all the

adjusted p-values are above 0.05 which means the results are

not statistically significant. Thus, from which we can conclude

that alert and defect have a weak correlation for sequential

project releases. In this case, the answer to our first research

question (RQ1) is negative, there is no significant correlation

between the number of all alerts and defects.

This finding may seem different with the conclusion of

Couto et al. [1]. This difference results from the experimental

objects are different. In detail, their finding is discovered

via single release of different projects, while our finding is

discovered via the multiple releases of one project. We believe

that our finding has its practical meaning since many defect

prediction models are built by learning from the historical data

from the past releases in one project.

There is no significant correlation between the number of all
alerts and defects in terms of sequential project releases.

B. RQ2 Results

Motivation: Despite the actionable alerts are alerts which are

going to be fixed by developers, there is no evidence that

actionable alerts has a stronger connection with defects than

all the alerts currently. If there is an affirmative answer to

this question, it is a very meaningful guide for developers and

quality managers to build a robust and better quality system.

By classifying the alerts to actionable alerts and unactionable

alerts, developers can fix the actionable alerts preferentially

which are more likely to contain potential errors.

Approach: Similar to the approach in answering for RQ1,

we adopt the spearman correlation for answering this research

question. In detail, we first classify all the alerts into actionable

alerts and unactionable alerts. Then we calculate the action-

able alert density (AAlert Density), unactionable alert density

(UAlert Density) and defect density (Defect Density). Finally,

106

TABLE IV
RESULTS OF SPEARMAN CORRELATION COEFFICIENT IN EACH PROJECT

Alert Density UAlert Density AAlert Density
ρ(p-value) corr level ρ(p-value) corr level ρ(p-value) corr level

Defect Density(Myfaces Core) -0.132(1.000) Small -0.556(0.075) High 0.767(0.003) Very High
Defect Density(Camel) 0.738(0.111) Very High -0.190(1.000) Small 0.814(0.042) Very High
Defect Density(CXF) 0.311(0.72) Moderate -0.163(1.000) Small 0.624(0.030) High

Fig. 3. The rate of actionable alerts in the release history of MyFaces Core

Fig. 4. The rate of actionable alerts in the release history of Camel

Fig. 5. The rate of actionable alerts in the release history of CXF

we calculate the correlation coefficients with significance level

between AAlert density, UAlert density and Defect Density.

Results: Figure 3, Figure 4 and Figure 5 visualize the detailed

numerical values about the rates of actionable alerts among

FindBugs default alerts in each release of MyFaces Core,

Camel and CXF, respectively. It is shown that the rate of

actionable alerts is very low in our experiment. Except for

the rate of release 2.1.1 in MyFaces Core that is over 0.38,

other actionable alert rates are all lower than 0.1, and eleven

releases among the total forty releases in three projects do not

find any actionable alerts.

As Table IV shows, the values ρ in the column of UAlert

Density represent the correlation coefficients between unac-

tionable alert density and defect density, the values ρ in the

column of AAlert Density are coefficients between actionable

alert density and defect density with their adjusted p-values

for each project.

Considering the UAlert Density, the results show that two

projects possess the correlation level is “Small”, the other

project is “High”. However, all the correlation is not statisti-

cally significant (p-value > 0.05). It indicates that there is no

significant correlation between unactionable alerts and defects.

Considering the AAlert Density, the maximal coefficient value

is 0.814 in project Camel, and the minimum coefficient value

is 0.624 in project CXF, the correlation level is high or

very high and all of them have an high significance level

(p-value < 0.05), which means that there is a statistically

significant correlation between actionable alerts and defects.

This indicates that the answer to our second research question

(RQ2) is affirmative. Namely, the actionable alerts are more

appropriate than all the alerts for indicating defects.

There is a statistically significant correlation between ac-
tionable alerts and defects. The actionable alerts are more
appropriate than all the alerts for indicating defects. On
the other hand, there is no significant correlation between
unactionable alerts and defects.

V. RELATED WORK

This section presents related work about (a) the correlation

studies between alerts and defects, (b) the alert classification

techniques.

A. Correlation Analysis Between Alert and Defect

There are several papers about correlation studies between

alerts and defects. Boogerd and Moonen made a study on

the correlation between coding standard violations and defects

in three levels (across software versions, on individual files

and code lines) [18]. Alerts used in Boogerd and Moonen’s

experiment are raised by QA-C tool, a static analysis tool

used to detect C language coding standard violations. Differing

from our work, they only have analyzed a single software

component of the NXP TV platform, while we use three open

source projects. Also they considered the pre-release defects,

instead of post-release defects.

Similar to our work, Couto et al. [1] evaluated the corre-

lation between alerts and defects. In their work, they got the

number of default alerts and high-priority alerts by executing

FindBugs with default and high-priority configuration respec-

tively, and also retrieved the number of defects from the JIRA

system. Using the Spearmans rank correlation test, they found

that there is a stronger positive correlation between default

alerts and defects than the correlation between high-priority

107

alerts and defects. The main differences between their work

and our research are as follows: (a) the experimental subjects

they used are a single release from 30 different systems, while

we choose a series of sequential bug fix releases from each

project among three projects; (b) particularly, we evaluate the

correlation between actionable alerts and defects by using alert

classification techniques, which was not addressed in their

work.

B. Alert Classification

Alert classification is used to divide the alerts into actionable

alerts and unactionable alerts. To save time used to review the

huge number of alerts, Ogasawara et al. have only selected

41 key alert types as the actionable alert from over 500 kinds

of warnings reported by the QA-Cła static analysis tool for

C languagełbased on their experiences [19]. Ruthruff et al.

[20] built a logistic regression model to classify the actionable

alerts raised by using 33 alert characteristics, which had an

accuracy over 70%, and they introduced a screening process

to select alert characteristics for the model, which also saved

large time required to generate the model. By combining static

analysis with dynamic analysis, Chen et al. [21] implemented

IntFinder to detect suspect code instruction area, reported by

static analysis tools, to lower the false positives.

In a recent actionable alert classification study, Hanam et

al. used the contextual information location of each static

analysis alert (also called alert patterns) to classify actionable

and unactionable alerts [9]. In their work, they have extracted

alert characteristics from source code features at or near

the source of an alert, and have evaluated three machine

learning techniques over three open source projects using the

extracted alert characteristics. Via combining with other alert

characteristics like FindBugs alert characteristics, they have

identified 6% more actionable alerts than previous techniques.

VI. CONCLUSIONS AND FUTURE WORK

In our work, we have evaluated whether alerts or actionable

alerts can be used as an early predictor of post-release defects

in the release history of a project. We have investigated a

series of sequential releases of open source projects to answer

these two questions: (RQ1) Do release with more alerts contain

more defects in terms of the release history in a project?

(RQ2) Are actionable alerts more appropriate than all the

alerts for indicating defects? We obtained a negative result

to RQ1, namely, there was no significant correlation between

all the alerts and defects, the fluctuation of alert density stayed

relatively steady especially in sequential releases. Therefore,

it cannot thoughtlessly take advantage of FindBugs alerts to

estimate the quantity of the potential defects of a system. On

the contrary, the answer to RQ2 was positive, the result of the

correlation test provided the evidence that there is a significant

correlation between actionable alerts and defects. Therefore,

it indicates that not all the alerts but the actionable alerts can

be a better predictor of defects of a project.

In the future work, we also intent to extend our correlation

study to other kinds of static analysis tools like PMD and

Checkstyle. As the correlation between actionable alerts and

defects, additional work we plan to do is to build quality model

of source code by introducing the actionable alerts as a factor.

ACKNOWLEDGMENT

The work described in this paper was partially supported by

the Fundamental Research Funds for the Central Universities

of China (Grant No. 106112014CDJZR098801).

REFERENCES

[1] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static
correspondence and correlation between field defects and warnings
reported by a bug finding tool,” Software Quality Journal, vol. 21, no. 2,
pp. 241–257, 2013.

[2] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[3] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE software, vol. 25, no. 5, pp.
22–29, 2008.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[5] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: an
experimental approach,” in ICSE. ACM, 2008, pp. 341–350.

[6] S. Heckman and L. Williams, “A systematic literature review of action-
able alert identification techniques for automated static code analysis,”
IST, vol. 53, no. 4, pp. 363–387, 2011.

[7] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in SANER, vol. 1. IEEE, 2016, pp. 470–481.

[8] F. Thung, D. Lo, L. Jiang, F. Rahman, P. T. Devanbu et al., “To what
extent could we detect field defects? an empirical study of false negatives
in static bug finding tools,” in ASE. ACM, 2012, pp. 50–59.

[9] Q. Hanam, L. Tan, R. Holmes, and P. Lam, “Finding patterns in static
analysis alerts: improving actionable alert ranking,” in MSR. ACM,
2014, pp. 152–161.

[10] S. Heckman and L. Williams, “On establishing a benchmark for evalu-
ating static analysis alert prioritization and classification techniques,” in
ESEM. ACM, 2008, pp. 41–50.

[11] ——, “A model building process for identifying actionable static analy-
sis alerts,” in International Conference on Software Testing Verification
and Validation. IEEE, 2009, pp. 161–170.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE.
IEEE, 2013, pp. 672–681.

[13] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings
of the 19th international symposium on Software testing and analysis.
ACM, 2010, pp. 241–252.

[14] J. E. M. Araujo, S. Souza, and M. T. Valente, “Study on the relevance of
the warnings reported by java bug-finding tools,” IET software, vol. 5,
no. 4, pp. 366–374, 2011.

[15] P. Sedgwick, “Spearmans rank correlation coefficient,” 2014.
[16] W. G. Hopkins, A new view of statistics. Will G. Hopkins, 1997.
[17] H. Abdi, “The bonferonni and šidák corrections for multiple compar-

isons,” Encyclopedia of measurement and statistics, vol. 3, pp. 103–107,
2007.

[18] C. Boogerd and L. Moonen, “Evaluating the relation between coding
standard violations and faultswithin and across software versions,” in
MSR. IEEE, 2009, pp. 41–50.

[19] H. Ogasawara, M. Aizawa, and A. Yamada, “Experiences with program
static analysis,” in Proceedings of the Fifth International Software
Metrics Symposium. IEEE, 1998, pp. 109–112.

[20] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: an
experimental approach,” in ICSE. ACM, 2008, pp. 341–350.

[21] P. Chen, H. Han, Y. Wang, X. Shen, X. Yin, B. Mao, and L. Xie,
“Intfinder: Automatically detecting integer bugs in x86 binary program,”
in International Conference on Information and Communications Secu-
rity. Springer, 2009, pp. 336–345.

108

