
Vol.:(0123456789)

Automated Software Engineering (2025) 32:32
https://doi.org/10.1007/s10515-025-00505-9

Tab: template‑aware bug report title generation
via two‑phase fine‑tuned models

Xiao Liu1 · Yinkang Xu1 · Weifeng Sun1 · Naiqi Huang1 · Song Sun2 · Qiang Li1 ·
Dan Yang3 · Meng Yan1

Received: 10 December 2024 / Accepted: 2 March 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
Bug reports play a critical role in the software development lifecycle by help-
ing developers identify and resolve defects efficiently. However, the quality of bug
report titles, particularly in open-source communities, can vary significantly, which
complicates the bug triage and resolution processes. Existing approaches, such as
iTAPE, treat title generation as a one-sentence summarization task using sequence-
to-sequence models. While these methods show promise, they face two major lim-
itations: (1) they do not consider the distinct components of bug reports, treating
the entire report as a homogeneous input, and (2) they struggle to handle the vari-
ability between template-based and non-template-based reports, often resulting in
suboptimal titles. To address these limitations, we propose TAB, a hybrid frame-
work that combines a Document Component Analyzer based on a pre-trained BERT
model and a Title Generation Model based on CodeT5. TAB addresses the first limi-
tation by segmenting bug reports into four components-Description, Reproduction,
Expected Behavior, and Others-to ensure better alignment between input and out-
put. For the second limitation, TAB uses a divergent approach: for template-based
reports, titles are generated directly, while for non-template reports, DCA extracts
key components to improve title relevance and clarity. We evaluate TAB on both
template-based and non-template-based bug reports, demonstrating that it signifi-
cantly outperforms existing methods. Specifically, TAB achieves average improve-
ments of 170.4–389.5% in METEOR, 67.8–190.0% in ROUGE-L, and 65.7–124.5%
in chrF(AF) compared to baseline approaches on template-based reports. Addition-
ally, on non-template-based reports, TAB shows an average improvement of 64%
in METEOR, 3.6% in ROUGE-L, and 14.8% in chrF(AF) over the state-of-the-art.
These results confirm the robustness of TAB in generating high-quality titles across
diverse bug report formats.

Keywords Bug reports · Title generation · Pre-trained model

Xiao Liu and Yinkang Xu have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-025-00505-9&domain=pdf

 Automated Software Engineering (2025) 32:32 32 Page 2 of 32

1 Introduction

Bug reports are essential artifacts in the software development lifecycle, playing a
crucial role in maintaining software quality and usability. These reports enable users
to communicate issues they encounter while using a software system, helping devel-
opers identify and resolve defects. A typical bug report contains key information,
including a description of the encountered problem, the expected behavior of the
software, the steps to reproduce the bug, and any additional user-provided sugges-
tions (Bettenburg etal. 2008). Well-constructed bug reports significantly contribute
to the efficiency of software maintenance and enhancement processes.

Given the central role of bug reports in software development, the quality of their
titles becomes particularly important. The title of a bug report serves as its first point
of entry for developers, and a concise, descriptive title can expedite the bug tri-
age and resolution processes. Conversely, low-quality titles, and reports in general,
increase the cognitive load on developers and hinder efficient bug resolution (Chap-
arro etal. 2017, 2019; Davies and Roper 2014; Karim etal. 2017). Recognizing this,
prior research has focused on enhancing the overall quality of bug reports, particu-
larly by improving the clarity and informativeness of bug report titles. These efforts
aim to reduce the time and effort developers spend on identifying and addressing
software issues, ultimately improving software development efficiency.

Bug report titles can be explicitly analyzed to streamline software engineer-
ing workflows by quickly conveying critical information to developers (Ko etal.
2006). However, in open-source communities, the quality of bug report titles can
vary significantly, leading to inefficiencies in the bug triage process. To address this
challenge, Chen etal. (2020) proposed an automated method called iTAPE, which
focuses on generating accurate titles for bug reports on platforms like GitHub. The
core idea of iTAPE is to treat bug report title generation as a one-sentence summari-
zation task. In this approach, the content of the bug report is provided as input, and
iTAPE employs a sequence-to-sequence (seq2seq) model to automatically generate
a title. iTAPE leverages advanced natural language processing techniques, such as
attention and encoder-decoder architectures, commonly used in machine transla-
tion tasks. This alignment of title generation with translation tasks allows iTAPE to
achieve promising initial results.

Despite these advances, the performance of iTAPE remains limited when evalu-
ated against standard metrics. Our analysis of iTAPE identifies two major perfor-
mance bottlenecks that hinder further progress.

Limitation L1: Inadequate Consideration of Bug Report Components. Prior
studies, such as the work by Ko etal. (2006), highlight that well-structured bug
report titles generally contain three critical elements: (1) an entity or behavior of
the software (e.g., a user interface component or a computational function), (2) a
description of the inadequacy or defect, and (3) the execution context in which the
problem occurred. Furthermore, many bug tracking systems, such as Mozilla’s Bug-
zilla, require users to adhere to structured templates when submitting bug reports,
ensuring that the reports are more complete, well-organized, and easier to process.
While iTAPE utilizes a seq2seq model that has proven effective in various natural

Automated Software Engineering (2025) 32:32 Page 3 of 32 32

language processing tasks, its formulation of the bug report title generation task as a
typical machine translation problem overlooks the nuanced structure of bug reports.
By treating the entire bug report as raw input and directly generating a title, iTAPE
fails to differentiate between the distinct components of the report, each of which
contributes uniquely to the description of the bug. This simplification reduces the
ability of the model to accurately capture and emphasize the key information needed
for a meaningful and concise title, ultimately limiting its overall performance.

Limitation L2: Variability in Bug Report Styles and Template Adherence.
In real-world scenarios, bug reports are written by a diverse range of users and
developers, each with varying levels of expertise and different writing styles (Zhang
et al. 2017). This variation in style and content can make bug reports difficult to
interpret, especially when natural language is used inconsistently across reports.
Although platforms like GitHub recommend using predefined templates for bug
reporting, it is challenging to ensure that users adhere strictly to these guidelines.
For instance, a study by Li et al. (2023) found that in 2020, only approximately 30%
of bug reports submitted on GitHub followed the recommended template. Conse-
quently, a large proportion of bug reports remain unstructured, with inconsistent or
disorganized information, making them harder to process. Treating template-based
and non-template-based bug reports uniformly when generating titles introduces sig-
nificant challenges. The information in non-template reports is often more chaotic
compared to the structured data in template-based reports, leading to inconsistencies
in model training and output. Using a single model to generate titles for both types
of reports is suboptimal, as the model struggles to handle the differences in structure
and information quality. Furthermore, training the model on mixed datasets contain-
ing both types of reports can hinder the model’s ability to effectively learn meaning-
ful semantic patterns, ultimately resulting in unsatisfactory title generation for both
template-based and non-template-based bug reports.

Addressing Limitation 1: Structured Dataset and Template-Aware Model
Training. To address the Limitation L1, we construct a dataset consisting of 28,273
template-based issues. This dataset ensures that each bug report follows a consistent
structure, making it easier for the model to identify and utilize the critical compo-
nents necessary for effective title generation. To enhance the model’s ability to cap-
ture the semantic relationships within bug reports, we divide the report content into
four distinct categories: Description, Reproduction, Expected behavior, and Others.

We chose these four components based on the following considerations:

• Simplification and Focus: These four components cover the core information
found in most bug reports in open-source communities, effectively helping the
model understand the basic context of the issue and generate relevant and con-
cise titles. In contrast, components like stack trace and log typically contain
more technical details that are valuable for debugging, but are not directly rel-
evant to the task of title generation.

• Generality: Our goal is to create a model capable of handling common bug
report templates, which typically include descriptions of the issue, reproduc-
tion steps, expected behavior, and additional context. Stack traces and logs,

 Automated Software Engineering (2025) 32:32 32 Page 4 of 32

due to their diverse content and formatting, lack the universality needed to be
included as part of the core components.

This classification enables the model to align its input with the appropriate output
more effectively, allowing it to generate more meaningful and accurate titles by
focusing on the specific role of each component in the bug report.

Given the strong prior knowledge and semantic understanding that pre-trained
models possess, we select CodeT5 as the base model for the title generation task.
CodeT5, being pre-trained on a large corpus of code and natural language, pro-
vides a robust foundation for learning the subtle associations between the differ-
ent components of bug reports and the titles they require. By leveraging the mod-
el’s existing capabilities in language understanding, our approach ensures that the
model captures the nuances of bug report content, leading to improvements in
title generation performance.

Addressing Limitation 2: Divergent Title Generation Framework. To
mitigate the challenges posed by the variability in bug report styles, particularly
between template-based and non-template-based reports, we introduce a divergent
title generation framework. For template-compliant bug reports, our approach
directly applies the bug report title generator to produce accurate and relevant
titles. This ensures that reports adhering to a predefined structure are efficiently
processed by leveraging the clarity and consistency of their content. For non-tem-
plate-based bug reports, which tend to exhibit more variability in their structure
and content, we design a document component analyzer. This analyzer effectively
extracts the four key components–Description, Reproduction, Expected behavior,
and Others–from unstructured reports. By identifying and classifying these com-
ponents, we enable the model to align the extracted content with the title genera-
tion process. Once the key elements are extracted, the title generator utilizes this
structured information to produce coherent and informative titles, improving the
overall accuracy and relevance of title generation for non-template-based reports.

In conclusion, we propose an automated bug report title generation frame-
work, named TAB. For a given bug report, if it adheres to a predefined bug report
template, TAB directly leverages a fine-tuned title generator to produce the cor-
responding title. If the bug report does not follow the template, TAB employs
a document component analyzer to assign component labels to each line of the
report. The labeled content is then processed by the title generator to create a
suitable title based on the identified components. To evaluate the effectiveness of
TAB we conducted experiments on both template-based and non-template-based
datasets. For the template-based dataset, we compared our method with baselines
such as iTAPE and NNGen. Our approach achieved average improvements over
the baselines of 170.4% to 389.5% in METEOR, 67.8% to 190.0% in ROUGE-L,
and 65.7% to 124.5% in chrF(AF). For the non-template-based dataset, we com-
pared our method with iTAPE, and our approach showed an average improvement
of 64% in METEOR, 3.6% in ROUGE-L, and 14.8% in chrF(AF). These results
demonstrate that TAB significantly outperforms existing methods in generating
titles for template-based bug reports and delivers satisfactory results for non-tem-
plate-based bug reports, outperforming the current state-of-the-art approaches.

Automated Software Engineering (2025) 32:32 Page 5 of 32 32

This further proves the effectiveness of both our title generator and document
component analyzer.

Novelty & Contributions. To sum up, the contributions of this paper are as
follows:

• Template-Based Bug Report Dataset. We conduct a comprehensive analysis of
the content and structure of GitHub issue templates specifically designed for bug
reporting. Based on this analysis, we construct a dataset containing over 28,000
template-based bug reports, each adhering to a standardized format. This dataset
provides a valuable resource for training and evaluating automated bug report
title generation systems by ensuring consistent and structured input. To the best
of our knowledge, this is the first large-scale dataset composed exclusively of
template-based bug reports, offering a unique benchmark for research in this
area.

• Novel Framework. We introduce TAB, a hybrid framework that combines the
strengths of two key components: the Document Component Analyzer (DCA),
powered by a pre-trained BERT model, and the Title Generation Model (TGM),
built on the pre-trained CodeT5 model. The framework is specifically tailored to
the unique characteristics of bug report title generation, enabling efficient and
accurate title creation by leveraging both semantic understanding and contextual
alignment of bug report content.

• Extensive Evaluation. We conduct an extensive evaluation of TAB through
comprehensive experimental studies. The results demonstrate that TAB signifi-
cantly outperforms two baseline approaches, consistently producing high-quality
titles for semi-structured bug reports. These findings highlight TAB’s ability to
handle the variability in bug report structures while maintaining accuracy and
relevance in title generation.

• Open Science. To promote transparency and reproducibility in research, we
contribute to the open science community by releasing the following resources
(Anonymous 2024): (1) the template-based bug report dataset used in our experi-
ments, which contains over 28,000 structured bug reports, and (2) the implemen-
tation of the TAB framework, including both the Document Component Analyzer
and Title Generation Model. These resources are made publicly available to
facilitate further research in automated bug report title generation and to encour-
age benchmarking across different methodologies.

2 Motivation

Figures 1 and 2 illustrate the motivation behind our research. In Fig. 1, when the
entire bug report is treated as a homogeneous input and a title is generated without
considering the individual components, TAB produces the title “React App fails to
load on IE11.” While this title captures part of the context, it fails to fully convey the
core issue described in the bug report. However, by leveraging the distinct compo-
nents of the bug report–namely, Description, Reproduction, Expected Behavior, and
Others–TAB generates the title “Unable to get property ’root’ of undefined or null

 Automated Software Engineering (2025) 32:32 32 Page 6 of 32

reference,” which more accurately reflects the actual problem encountered by the
user. This comparison demonstrates that accounting for the various components of a
bug report significantly enhances the model’s ability to capture critical information,
resulting in more precise and relevant titles. This motivates the need for template-
aware title generation to improve the performance of bug report summarization.

While the template-based approach improves title generation, a significant chal-
lenge remains: most bug reports, especially in open-source repositories, are unstruc-
tured and lack clearly delineated components. Manually separating these compo-
nents is not only labor-intensive but also impractical at scale. As a result, existing
methods have struggled to generate effective titles for non-template-based bug
reports. To address this issue, we propose the use of a Document Component
Analyzer, which automatically identifies and extracts key components from
unstructured bug reports, converting them into a structured, template-like format.
Figure 2 demonstrates the effectiveness of the DCA. Without DCA, TAB generates
the title “llc and gcc should be able to create a usable binary,” which, while relevant,

Bug Report: the app fails to load and throws an error unable to get property root of undefined

or null reference for almost all components it s working well on chrome and safari but the

problem is on ie11 .

steps 1 create a react app and add some mui components to it 2 run the app on ie .

the app should load and render components .

i m trying to come up with a solution to get rid of this error and run my app normally tech

version material ui v version react v version browser ie11 .

<Description>

<Reproduction>

<Expected Behavior>

<Others>

Ground-Title:Unable to get property 'root' of undefined or null reference

Title Generated By Non-Template-based Bug-Report: React App fails to load on IE11

Title Generated By Template-based Bug Report:Unable to get property 'root' of undefined

or null reference

Fig. 1 Comparison of Generated Titles for Template-Based Bug Reports

Bug Report: having to run ` llc ` and ` gcc ` to create a usable binary after running ` rustc ` is

a lot of work . we should use llvm 's mcstreamer framework to emit object files directly .

<Description>

<Others>

Ground-Title:use mcstreamer to emit object files

Title Generated By Non-Template-based Bug-Report: llc and gcc should be able to create

a usable binary

Title Generated By Template-based Bug Report:use llvm's mcstreamer framework to emit

object filesUnable to get property 'root' of undefined or null reference

Fig. 2 Comparison of Generated Titles for Non-Template-Based Bug Reports

Automated Software Engineering (2025) 32:32 Page 7 of 32 32

does not fully capture the core issue. However, after applying DCA to template
the bug report, TAB generates the title “use llvm’s mcstreamer framework to emit
object files,” which closely matches the original problem. This preliminary result
highlights the effectiveness of the DCA in transforming non-template-based bug
reports into structured ones, enabling more accurate and meaningful title genera-
tion. Thus, the DCA plays a crucial role in bridging the gap between unstructured
bug reports and the need for structured, template-aware processing in automated bug
report title generation.

3 Approach

3.1 Overview

To enhance the quality of bug report title generation by leveraging template-based
reports, we propose a generalized approach, TAB. As shown in Fig. 3, TAB is
designed with two key phases: an offline training phase and an online inference
phase. The offline training phase is further divided into two critical stages: training
the Document Component Analyzer (DCA) and constructing the Title Generation
Model (TGM).

In the DCA training stage, we collect a dataset of 28,273 template-based issues
from starred GitHub repositories. The DCA component uses BERT (Devlin etal.
2018) as the foundational pre-trained model, which we fine-tune specifically for
this task. The fine-tuning process enables the DCA to effectively identify and label
the key components of a bug report–such as Description, Reproduction, Expected

Fig. 3 The overall framework of our approach. Offline training phase: Train Document Component
Analyzer(DCA) and Construct Title Generation Model(TGM). Online inference phase: Trained model is
applied to generate titles for template-based bug reports

 Automated Software Engineering (2025) 32:32 32 Page 8 of 32

Behavior, and Others–transforming unstructured reports into structured, template-
based formats. This transformation is crucial for improving the subsequent title gen-
eration process, especially when handling non-template-based bug reports.

In the TGM construction stage, we introduce four special subsegments and
prompt tokens to enhance the model’s understanding of the different components
within a bug report. This segmentation ensures that the model can align its generated
titles with the respective content more precisely. To achieve this, we fine-tune the
pre-trained CodeT5 model (S. Wang etal. 2021), which is specifically designed for
code-related natural language processing tasks. By leveraging CodeT5’s advanced
capabilities in both code understanding and natural language processing, the TGM is
trained to learn effective title generation patterns, ensuring that the output titles are
both relevant and concise.

The combination of the DCA and TGM allows TAB to process both template-
based and non-template-based bug reports effectively. During the online inference
phase, the system first applies the DCA to analyze and label bug report components
(if necessary), followed by the TGM generating an appropriate title based on the
structured input. This two-step process ensures that TAB can accurately capture the
key information from diverse bug reports, improving the overall performance and
relevance of the generated titles.

3.2 TAB for bug report title generation

In Fig. 3, we present the TAB framework for bug report title generation. In the
remainder of this section, we will provide detailed information on the two main
phases, as well as the specific customization settings for this task.

3.2.1 Dataset construction

We focus on the top 1,000 most-starred repositories, which are typically well-
maintained and actively used, allowing us to gather high-quality data. From these
repositories, we collected a total of 28,273 template-based issues, forming the basis
of our dataset. Duplicate bug reports are a common phenomenon and could poten-
tially affect experimental results. To address this, we compared the training set with
the validation set and the training set with the test set to identify any duplicate bug
reports. Our analysis revealed that the proportion of duplicate bug reports between
the training set and the validation set, as well as between the training set and the test
set, is less than 0.1%. This indicates that the dataset is not significantly affected by
duplicate reports, ensuring no data leakage or cross-contamination between sets.

❶ Template-Based Issue Selection: Although GitHub introduced issue and
pull request templates in March 2016, not all repositories adopt these custom tem-
plates. To identify repositories that utilize custom templates, we examine the top
1000-starred repositories for the presence of a .github folder, which typically
contains configuration files for GitHub actions and templates. Specifically, issue
templates are generally stored in the .github/ISSUE_TEMPLATE folder. Repos-
itories containing this folder are flagged as using custom issue templates, allowing

Automated Software Engineering (2025) 32:32 Page 9 of 32 32

us to select those repositories that have integrated this feature. As a result, we identi-
fied 503 repositories that utilize issue templates, from which we collected 28,273
template-based issues.

❷ Data Processing: To prepare the data for analysis, we implement a series of
preprocessing steps using the Natural Language Toolkit (NLTK). First, we split the
text of each bug report into sentences, ensuring clear segmentation of the content.
Due to the limited input length that the model can accept, we aim to extract the
most information-dense parts from the bug reports. To minimize noise, we filter out
sentences containing 1) URLs, 2) @name mentions, and 3) markdown headlines,
as these elements generally do not contribute directly to the core bug description.
Although some of these sentences may contain potentially useful information, such
as relevant context or error details, they are often less dense in terms of core bug
content. Given the model’s input length constraint, we prioritize retaining sentences
that contain higher information density. Consequently, we remove these specific sen-
tences to ensure the model focuses on the most relevant aspects of the bug report.
URLs and user mentions are excluded because our focus is on summarizing the bug
report’s main content, while markdown headlines are removed to avoid introducing
a high number of out-of-vocabulary (OOV) words. Next, we tokenize the text using
NLTK, which has been shown in previous research to outperform other common
NLP libraries in tokenizing software documentation. In addition, version numbers
(e.g., “1.2.3”) are normalized to “version” and numeric values are replaced with “0”
to reduce variability in the dataset. Any tokens containing non-ASCII characters are
removed to ensure consistency, and texts with more than 50% non-ASCII tokens are
flagged as “nonASCII”. This preprocessing ensures a clean and uniform dataset for
further analysis. For the template-based issues, we further extract key fields such as
Description, Reproduction, Expected Behavior, and Others to construct a well-struc-
tured corpus. This division of content into distinct fields allows us to leverage the
unique components of each issue for more precise and meaningful title generation.

3.2.2 Offline training phase

In this phase, we describe the process of training the Document Component Ana-
lyzer (DCA) and constructing the Title Generation Model (TGM). The DCA is
designed to categorize the different components of bug reports, while the TGM
is responsible for generating relevant and concise titles based on these structured
components.

❶ DCA Training: The Document Component Analyzer (DCA) is built on BERT
(Devlin etal. 2018), a pre-trained Transformer model known for its deep semantic
understanding capabilities. DCA fine-tunes BERT for the specific task of categoriz-
ing bug report sentences into key components, ensuring the model can effectively
differentiate between the various aspects of a bug report.

For this task, we first preprocess the bug reports by segmenting them into sen-
tences. Each sentence is categorized into one of four classes: Description (des),
Reproduction (rep), Expected Behavior (exp), and Others (oth). This categoriza-
tion is essential for accurately structuring the bug report, as each component serves
a different function in describing the issue and providing context. Given an input

 Automated Software Engineering (2025) 32:32 32 Page 10 of 32

sentence S =
[
w1,w2,… ,wm

]
 , we first tokenize it using the BERT tokenizer, which

transforms the sentence into a sequence of tokens:

where [CLS] is a special token representing the entire sentence, [SEP] is a sep-
arator token marking the end of the sentence, and ti represents each token in the
sentence.

Once tokenized, these tokens are converted into embeddings, where each token
ti is mapped to an embedding vector xi . This embedding sequence is then passed
through the multiple layers of the BERT model, where self-attention mechanisms
capture the contextual information of each token within the sentence. The final hid-
den state of the [CLS] token, h[���] , is extracted, as it encodes the semantic rep-
resentation of the entire sentence. This representation is fed into a fully connected
layer followed by a softmax function to predict the class of the sentence:

where W and b are learnable parameters, and y represents the predicted class (i.e.,
one of the four bug report components). This fine-tuned DCA can accurately clas-
sify sentences into the correct bug report components, allowing for better-structured
inputs for the Title Generation Model (TGM).

❷ TGM Construction: At this stage, our primary goal is to train the Title Gen-
eration Model (TGM), which generates concise and relevant titles based on the dis-
tinct textual components of bug reports, including the description, reproduction,
expected behavior, and others. These components are distinguished and integrated
using prompt-based learning. Our model is built on top of the pre-trained (S. Wang
etal. 2021) architecture, which has been fine-tuned using our custom dataset. It is
important to note that while we utilize CodeT5, TAB can also be adapted to other
Pre-trained Code Models (PCMs), as discussed in Sect. 5.3.

CodeT5 follows the encoder-decoder architecture of T5, employing denoising
sequence-to-sequence tasks during pre-training. Additionally, it incorporates two
identifier-related tasks–identifier tagging and masked identifier prediction–which
allow it to integrate the semantics of developer-assigned identifiers. These tasks ena-
ble CodeT5 to effectively capture the contextual significance of identifiers and better
understand dependencies between them. CodeT5 has demonstrated high adaptability
across various downstream tasks, making it an ideal choice for title generation in
software engineering contexts.

(1) Prompt Design: Liu P etal. (2023) modifies the original input by introduc-
ing specific prompt templates designed to guide the model in generating more
accurate outputs. However, creating effective prompts for downstream tasks can
be challenging and often requires careful design and experimentation. In our
approach, we design four distinct input slots to represent the key components of
a bug report: the description, reproduction, expected behavior, and others. These
slots are denoted by placeholders in the prompt. The structure of the prompt for
the title generation task is defined as follows:

(1)T =
[
[���], t1, t2,… , tn, [���]

]

(2)P(y|h[���]) = softmax(W ⋅ h[���] + b)

Automated Software Engineering (2025) 32:32 Page 11 of 32 32

Here, [X], [Y], [Z], and [V] are placeholders for the respective bug report com-
ponents. This prompt structure ensures that the model is provided with clear
and structured information about each aspect of the bug report, facilitating
more accurate title generation.

(2) Prompt Tuning on CodeT5: CodeT5’s encoder consists of multiple layers of
Transformers, each comprising a self-attention layer and a feed-forward network.
The encoder’s role is to generate contextual embeddings for the input sequences,
which in our case are the bug report components and prompt tokens. We initial-
ize the encoder with a pre-trained CodeT5 model to take advantage of its strong
contextual understanding, specifically in the domain of software-related natural
language tasks.

• Encoder: During training, the model takes pairs of sub-segments (repre-
senting the bug report components) and prompt tokens as input, denoted
by TG. These inputs are tokenized using a subword (Sennrich etal. 2015),
which helps mitigate out-of-vocabulary (OOV) issues by breaking complex
identifiers into subtokens. By retaining the original tokenization vocabu-
lary from the pre-trained CodeT5 model, we ensure that the model inherits
its semantic knowledge and starts from a strong initialization point, allow-
ing it to effectively learn title generation patterns. The tokenized input
sequence is then passed through the embedding layer, where each token
is mapped to an embedding vector X̃ = {x̃1, x̃2,… , x̃n} . These embeddings
are processed through the stacked layers of the CodeT5 encoder, where
each Transformer block contains a multi-headed self-attention mechanism
(J. Devlin etal. 2019), a feed-forward network, and layer normalization (Ba
etal. 2016). The process is as follows:

 In the above equations, MultiHead(·), FFN(·), and LayerNorm(·) represent
the multi-head self-attention layer, the feed-forward network, and the layer
normalization operation, respectively. The index i denotes the output of the i-
th Transformer layer. The multi-head self-attention mechanism captures long-
range dependencies between the tokens, allowing the model to understand
complex relationships within the input. The feed-forward network enhances
feature extraction by linearly transforming the token embeddings, and layer
normalization ensures stable training by normalizing the token embedding
distributions.

 After processing through l Transformer layers, the input sequence TG
is encoded into a sequence of contextual embeddings Xl = {xl

1
, xl

2
,… , xl

n
} .

The last hidden state xl
n
 is used as the final contextual vector representa-

(3)fInput = ��� ∶ [X] ∶ ��� ∶ [Y] ∶ ��� ∶ [Z] ∶ ��� ∶ [V]

(4)X̂ = MultiHead(X̃)

(5)X
i = LayerNorm(X̂ + FFN(X̂))

 Automated Software Engineering (2025) 32:32 32 Page 12 of 32

tion ℝ of the input TG. This representation serves as the foundation for
generating accurate and semantically meaningful titles for the bug reports.

• Decoder: The process of generating a bug report title follows a similar
approach to that of sequence generation tasks. Specifically, the Title Gen-
eration Model (TGM) is designed to generate the corresponding title one
token at a time, conditioned on the input components of the bug report
(i.e.,, description, reproduction steps, expected behavior, and others). The
generation of the new title t′ is performed sequentially, where each token t′

i

is generated based on the previously generated tokens and the input com-
ponents. Formally, the task of generating a bug report title can be defined
as finding the sequence t⃗′ such that:

where P�(t

�|Iu) represents the probability of the title sequence t′ given the input
components Iu . This probability can be factorized as:

where P�(t
�
i
|t�
1
, ..., t�

i−1
, x, x�, e, t) represents the probability of generating token

t′
i
 conditioned on the previously generated tokens and the input components of

the bug report. The model is trained to minimize the negative log-likelihood of
the predicted title sequence relative to the ground-truth title. This ensures that
the generated titles closely match the actual titles used in the bug reports.

The architecture of the Title Generation Model consists of two key compo-
nents: the self-attention layer and the encoder-decoder attention layer. The
self-attention mechanism captures dependencies between the already generated
tokens, while the encoder-decoder attention mechanism aligns the input compo-
nents (description, reproduction, etc.) with the tokens being generated. When
calculating the attention distribution between the generated tokens yj and the
input tokens w1, ...,wm , the attention score is calculated using the key vector K
from the encoder outputs z = (z1, ..., z|I|) . The attention distribution �j between
the generated tokens yj and the input components is computed as follows:

where Qj represents the query vector for the generated token yj , and dk is the dimen-
sionality of the key vectors. This mechanism enables the model to effectively cap-
ture the relationships between the bug report content and the generated title, leading
to coherent and contextually accurate title generation.

t⃗� = argmax
t⃗�

P𝜃(t
�|Iu)

P�(t
�|I) =

w∏

i=1

P�(t
�
i
|t�
1
, ..., t�

i−1
, x, x�, e, t)

�
j = softmax

�
QjK

T

√
dk

�

Automated Software Engineering (2025) 32:32 Page 13 of 32 32

3.2.3 Online inference phase

In the online inference phase, the process begins by determining whether the bug
report is template-based. For template-based reports, the model directly extracts
the relevant components from the issue body, including the description, repro-
duction, expected behavior, and others segments. These components are clearly
delineated in template-based reports, allowing for straightforward extraction.
1) For non-template-based reports, the process requires an additional step. We
employ the Document Component Analyzer (DCA) to automatically segment
the bug report into a structured format that mimics a template. The DCA iden-
tifies and categorizes the key segments, including the description, reproduc-
tion, expected behavior, and others components, ensuring that even unstruc-
tured reports can be processed consistently. 2) Once the four key segments are
extracted–whether from a template-based or DCA-processed bug report–they are
combined with predefined prompt tokens. These prompt tokens provide contex-
tual cues that guide the model in understanding the relationship between the com-
ponents of the report and the title it needs to generate. 3) The final step involves
feeding the four extracted segments, along with the prompt tokens, into our fine-
tuned CodeT5 model. The model, which has been specifically trained for bug
report title generation, processes this input and generates a concise, contextually
appropriate title that accurately reflects the content of the bug report. This end-to-
end process ensures that the system can generate high-quality titles regardless of
whether the input bug report follows a predefined template.

4 Experimental setup

This section presents our research questions, baselines, evaluation metrics and
evaluation methods.

4.1 Research questions

We want to investigate the following research questions:

• RQ1: How effective is TAB in generating titles for template-based bug reports?
• RQ2: Can TAB generate appropriate titles for all bug reports?
• RQ3: How do different pre-trained models affect TAB?
• RQ4: Can TAB generate higher-quality title than state-of-the-art baselines by

human study?

4.2 Baselines

To evaluate the performance of TAB, we use two baselines belonging to different
types: iTAPE (Chen etal. 2020), Liu etal. (2018).

 Automated Software Engineering (2025) 32:32 32 Page 14 of 32

iTAPE. iTAPE is the first automated method to generate titles for bug reports,
which is also a Seq2Seq summarization method. Since iTAPE formulates title
generation into a one-sentence summarization task, it cannot directly use the
issue body which we split as input. To address this issue, we take the issue body
before the content split as the input to the iTAPE. In particular, we directly used
the replication package published in the Chen etal. (2020), to ensure that the
model parameters and other settings were consistent with the original.

NNGen. NNgen is a state-of-the-art commit messages generation method. It gen-
erates commit messages by using the nearest neighbor algorithm to retrieve from
historical commits. In this task, we use NNgen to generate bug report titles based on
the corresponding issue bodies.

4.3 Evaluation settings

Following our approach, we utilize the pretrained BERT-base-uncased model for the
Document Component Analyzer (DCA) Training Stage with a learning rate of 2e-5,
5 epochs, and a batch size of 8. For the Title Generation Model (TGM) Construction
Stage, we employ the pretrained CodeT5-base model with a learning rate of 5e-5, 3
epochs, and a batch size of 32. All experiments are conducted in a high-performance
environment using three NVIDIA A800-SXM4-80GB GPUs.

4.4 Evaluation metrics

We evaluate the effectiveness of our approach and baselines with three metrics,
ROUGE-L (Lin 2004), Lavie and Agarwal (2007) and Popović (2015). Such evalu-
ation metrics are widely used for text generation tasks and verified to be reliable
proxies (Roy etal. 2021). We obtain these metric scores using nlg-eval1 (Sharma
etal. 2017), rouge,2 and chrF3 package.

ROUGE-L. ROUGE is a set of metrics that was first introduced for summariza-
tion. Unlike BLEU which only calculates precisions, ROUGE is the harmonic mean
between n-gram precisions and recalls of a generated message to the reference mes-
sage. We select the ROUGE-L (i.e., n-gram in ROUGE-L is the longest common
subsequence) as our evaluation metrics which are also used by Liu etal. (2019).

METEOR. METEOR is proposed as a metric that correlates better at the sen-
tence level with human evaluation. The calculation of METEOR needs to create an
alignment between the generated and the reference message by mapping each uni-
gram in the generated message to 0 or 1 unigram in the reference message. Based on
this alignment, unigram precision and recall are computed. The METEOR score is
the harmonic mean between precision and recall with the weight for recall 9 times

1 https:// github. com/ Maluu ba/ nlg- eval.
2 https:// pypi. org/ proje ct/ rouge/
3 https:// github. com/m- popov ic/ chrF.

https://github.com/Maluuba/nlg-eval.
https://pypi.org/project/rouge/
https://github.com/m-popovic/chrF.

Automated Software Engineering (2025) 32:32 Page 15 of 32 32

as high as the weight for precision. METEOR further employs a penalty factor for
fragmentary matches.

chrF. chrF is an automatic evaluation metric that works solely on character
n-grams rather than word n-grams. It can be seen as a character n-gram F-score.

4.5 Evaluation methods

4.5.1 Evaluation on template‑based bug reports

The RQ1 aims to investigate the effectiveness of TAB in generating titles for tem-
plate-based bug reports. Hence, we evaluate it and the baselines on our datasets in
terms of ROUGE-L, METEOR, and chrF. The issue has the attribute of timestamp.
For each GitHub project, we sorted its issues in the ascending order of the issue’s
creation time. We then divided the dataset by time, using the first 80% of the issues
for training, while the remaining 20% were shuffled and split equally for validation
and testing.

This approach was chosen to better simulate the model’s application in real-world
scenarios. By using earlier bug reports for training and later reports for validation
and testing, we ensure the model can handle real-time issues and generalize well
to new, unseen problems. This method also helps avoid data leakage and prevents
overlap between the training and test sets, thereby improving the reliability of the
experimental results. Although this strategy may introduce shifts in bug report char-
acteristics over time, it allows us to assess the model’s performance when dealing
with new and evolving issues.

Since our datasets are made up of issues from multiple GitHub projects, it is nec-
essary to evaluate the impact of cross-project data on the quality of the title gener-
ated by TAB. Specifically, we use two validation patterns in RQ1, i.e., In-project
validation and cross-project validation.

Within-project validation refers to training and testing with data from the same
GitHub project. Github projects are divided into sizes, but too little issue data will
make the model overfitting. Therefore, we only conduct experiments on projects
with more than 5000 semi-structured issues (using the bug report template). There
are 28 eligible projects. The average of the testing results of all projects are used as
the in-project validation result.

Cross-project validation means the training data, validation data and test data
are from all GitHub projects. The overall training set is obtained by combining the
training sets of all projects. Validation set and test set are the same way.

4.5.2 Evaluation on non‑template‑based bug reports

The dataset introduced in iTAPE (Chen etal. 2020) contains 333,563 bug report
samples from the top 200 starred repositories on GitHub, significantly larger than
the dataset we use for training. A notable observation is that the majority of GitHub
bug reports are non-template-based, highlighting the prevalence of unstructured

 Automated Software Engineering (2025) 32:32 32 Page 16 of 32

reports in real-world repositories. In RQ2, we aim to assess whether our model,
TAB, is capable of generating accurate titles for non-template-based bug reports.

For template-based bug reports, TAB can directly generate titles by leveraging
the clearly defined sections such as description, reproduction, and expected behav-
ior. However, non-template-based bug reports typically consist of one or more para-
graphs without explicit labels for these components. To address this issue, we train
a Document Component Analyzer (DCA) using our own curated dataset
of template-based bug reports. This DCA is then applied to the non-template-based
bug reports, automatically classifying and extracting the key components required
for title generation.

In this evaluation, we use the iTAPE dataset (Chen etal. 2020) as the test set for
verifying our approach. Since the iTAPE dataset contains both template-based and
non-template-based bug reports, we first divide the dataset into two subsets: tem-
plate-based and non-template-based reports. For the non-template-based subset, we
apply our trained DCA to extract the key components (e.g., description, reproduc-
tion, expected behavior) from the unstructured text, treating these extracted compo-
nents as subtypes within the non-template-based bug reports.

It is important to emphasize that while iTAPE uses its own dataset for training,
our DCA is trained on a separate dataset that we collected, consisting of 28,273 tem-
plate-based bug reports from GitHub repositories. We do not use the iTAPE dataset
for DCA training, ensuring that our DCA is generalized and capable of handling
unseen non-template-based reports. After applying the DCA to the non-template-
based bug reports, we evaluate the performance of TAB in generating titles and
compare it against the performance of iTAPE on the same dataset. This compari-
son allows us to verify the robustness of TAB in handling non-template-based bug
reports.

5 Results

5.1 RQ1:TAB + template‑based bug reports

We evaluate the performance of TAB using two validation patterns and compare
its effectiveness against baseline approaches. The results of these experiments are

Table 1 Effectiveness of TAB and baselines by using validation two patterns

Bold value indicates the highest score in the same dataset and for the same evaluation metric

Pattern Method METEOR ROUGE-L chrF(AF)

Within iTAPE 9.47 +181.4% 17.76 +87.6% 19.08 +77.7%
NNGen 6.32 +321.7% 13.66 +143.9% 14.28 +137.5%
TAB 26.65 – 33.31 – 33.91 –

Cross iTAPE 10.03 +170.4% 19.58 +67.8% 20.26 +65.7%
NNGen 5.54 +389.5% 11.33 +190.0% 14.95 +124.5%
TAB 27.12 – 32.86 – 33.57 –

Automated Software Engineering (2025) 32:32 Page 17 of 32 32

summarized in Table 1. The “Within” column represents the results obtained using
the within-project validation pattern, where both training and testing data are from
the same project. This approach assesses how well TAB can generalize within a sin-
gle project. The “Cross” column shows the results of the cross-project validation
pattern, where the model is trained on one set of projects and tested on entirely dif-
ferent projects. This validation pattern evaluates TAB’s ability to generalize across
diverse projects, which is critical for demonstrating the robustness and scalability
of the model in real-world, multi-project environments. By comparing the results
across these two validation patterns, we can assess the strengths and weaknesses of
TAB relative to the baseline models in both intra- and inter-project scenarios, pro-
viding a comprehensive understanding of its performance in practical settings.

Table 1 presents the performance comparison of TAB against two baseline meth-
ods, iTAPE and NNGen, under two validation patterns: within-project and cross-
project. The results are evaluated using three metrics: METEOR, ROUGE-L, and
chrF.

Within-Project Validation. In the within-project validation, where train-
ing and testing are performed on the same project, TAB significantly outperforms
the baselines across all metrics. For instance, TAB achieves a METEOR score of
26.65, compared to 9.47 for iTAPE and 6.32 for NNGen. This represents a substan-
tial improvement, demonstrating that TAB is highly effective at generating accurate
titles when both the training and testing data are from the same project. Similarly,
TAB achieves the highest ROUGE-L score of 33.31, which is considerably higher
than the 17.76 for iTAPE and 13.66 for NNGen. The chrF(AutoEval Framework)
scores also indicate a clear advantage for TAB, with a score of 33.91, compared to
19.08 and 14.28 for iTAPE and NNGen, respectively. These results show that TAB
not only captures the overall content more effectively but also generates titles that
are closer to the ground-truth in terms of fluency and accuracy.

Cross-Project Validation. In the more challenging cross-project validation,
where training is done on one set of projects and testing on a completely differ-
ent set, TAB continues to demonstrate strong performance. It achieves a METEOR
score of 27.12, outperforming both iTAPE (10.03) and NNGen (5.54). This indi-
cates that TAB generalizes well across different projects, a crucial capability for
real-world applications where bug reports often come from a variety of projects. For
the ROUGE-L metric, TAB achieves a score of 32.86, surpassing iTAPE’s 19.58
and NNGen’s 11.33. This suggests that TAB maintains its ability to generate titles
that closely reflect the key content of bug reports, even in cross-project scenarios.
The chrF(AutoEval Framework) score further emphasizes this point, with TAB
scoring 33.57, compared to 20.26 for iTAPE and 14.95 for NNGen. These results
demonstrate that TAB is capable of handling the variability between projects, main-
taining high accuracy and fluency in title generation.

Overall, the experimental results clearly show that TAB outperforms both iTAPE
and NNGen across all evaluation metrics and in both validation patterns. While
iTAPE shows a reasonable performance improvement over NNGen, it still falls
significantly behind TAB in all aspects. Notably, NNGen struggles the most, par-
ticularly in cross-project validation, where its scores are considerably lower than
both iTAPE and TAB. The significant gains made by TAB in both METEOR and

 Automated Software Engineering (2025) 32:32 32 Page 18 of 32

ROUGE-L suggest that it is particularly adept at capturing the semantic meaning
and key content of bug reports, while its high chrF scores indicate that the gener-
ated titles are more fluently aligned with the ground-truth. These results highlight
the robustness and versatility of TAB in generating high-quality bug report titles,
regardless of whether the reports are from the same or different projects.

Summary: The results confirm that TAB outperforms both iTAPE and NNGen across all metrics in
both within-project and cross-project validations. Notably, TAB demonstrates strong generalization
capabilities, making it effective in handling diverse bug reports across different projects. This high-
lights the robustness and scalability of TAB for automated bug report title generation.

5.2 RQ2: TAB + non‑template‑based bug reports

The dataset introduced in Chen etal. (2020) is divided into two parts for our experi-
ments. In RQ1, we focus on the analysis of template-based bug reports. For the non-
template-based bug reports, we employ the Document Component Analyzer
(DCA) as an intermediate processing layer. The DCA segments and classifies the
unstructured bug reports into meaningful components, which are then used as input
for the TAB framework. This approach allows us to directly compare the perfor-
mance of TAB against iTAPE on non-template-based bug reports, highlighting the
effectiveness of TAB in handling unstructured data.

Table 2 presents the comparative results between TAB and iTAPE on non-tem-
plate-based bug reports. Although the performance of TAB on non-template-based
bug reports is slightly lower than its performance on template-based reports, our
approach still demonstrates substantial effectiveness due to its advanced architec-
ture. Specifically, TAB achieves approximately 64% higher METEOR, 3.6% higher
ROUGE-L, and 14.8% higher chrF scores compared to iTAPE. These improvements
highlight the robustness and adaptability of TAB, enabling it to outperform iTAPE
even when handling the more challenging and unstructured non-template-based bug
reports. The results emphasize that TAB remains effective in generating accurate
and fluent titles, even in less structured scenarios.

Summary: The results demonstrate that TABconsistently outperforms iTAPE on non-template-based
bug reports, achieving significant improvements across all metrics. Despite the inherent challenges
of unstructured data, TABshows strong adaptability and effectiveness, making it a robust solution for
generating accurate titles even in less structured scenarios.

5.3 RQ3: impact of pre‑trained models on TAB performance

To validate the importance of the pre-trained model CodeT5 in TAB, we conducted
additional experiments by comparing it with two other prominent pre-trained mod-
els, CodeGen (Nijkamp etal. 2022) and Unixcoder (D. Guo etal. 2022), as well as
the natural language model T5 (Raffel etal. 2023). This comparison allows us to
better understand how different pre-trained models affect TAB. Such an analysis

Automated Software Engineering (2025) 32:32 Page 19 of 32 32

provides a comprehensive evaluation of the effectiveness of pre-trained models
across various code generation tasks and offers guidance for model selection. In
terms of data usage, we use template-based data(Within-project valida-
tion and Cross-project validation), which refers to RQ1, and non-
template-based data, which refers to RQ2.

The evaluation results are shown in Table 3. As observed in Table 3, the pre-
trained CodeT5 model consistently achieves the best performance in all cases. For
template-based data, the use of the pre-trained CodeT5 model leads to an enhance-
ment of the METEOR score by 3.1% to 25.8%, an increase in the ROUGE-L score
by 2.8% to 164.8%, and an improvement in the chrF score by 4.3% to 17.0%. This
improvement can be attributed to the pre-training process of the CodeT5 model,
particularly for understanding tasks. Compared to Nijkamp etal. (2022) and D. Guo
etal. (2022), CodeT5 utilizes a bidirectional Transformer structure that excels at pro-
cessing complex contexts and language patterns. Additionally, CodeT5 is optimized
during pre-training to capture the semantic features of code, enabling it to better
grasp the logical structure and finer details. In contrast, CodeGen focuses more on
generation tasks, and Unixcoder emphasizes unidirectional encoding. Compared to
T5 (Raffel etal. 2023), CodeT5 employs a specialized architecture fine-tuned spe-
cifically for code-related tasks, utilizing a bi-directional converter structure that
excels at capturing the intricate syntactic and semantic features of programming lan-
guages. In addition, CodeT5 is pre-trained on a large code corpus, enabling it to
better understand technical terms, variable names, error messages or code snippets
in bug reports. In contrast, T5 is primarily optimized for general natural language
processing tasks and lacks the specific pre-training needed to capture the technical
nuances and logical structure of code-related content. In contrast, CodeT5 is bet-
ter at generating contextually accurate and technically precise headings and summa-
ries, making it better suited for tasks involving both natural language and code. As
a result, CodeT5 is more effective at retaining and applying structured information
when generating titles, leading to significant improvements in performance metrics.

For non-template-based data, the use of the pre-trained CodeT5 model leads to an
enhancement of the METEOR score by 0.2% to 20.0%, an increase in the ROUGE-L
score by 1.4% to 158.2%, and an improvement in the chrF score by 0.5% to 14.8%.
This is because non-template-based bug reports tend to be less structured, with more
flexible and diverse content. CodeT5’s pre-training process, particularly through multi-
task learning, enhances its ability to handle diversity and adaptability in tasks, making
it more capable of recognizing and leveraging contextual relationships in unstructured
text. In contrast, CodeGen, which focuses primarily on generation tasks, struggles to
fully utilize context in handling free-form text, while Unixcoder’s unidirectional nature
limits its ability to capture complex, non-linear relationships. Similarly, while T5 excels

Table 2 Effectiveness of iTAPE and TAB for non-template-based bug reports

Bold value indicates the highest score in the same dataset and for the same evaluation metric

Method METEOR ROUGE-L chrF(AF)

iTAPE 14.25 28.30 28.17
TAB 23.37 29.31 32.34

 Automated Software Engineering (2025) 32:32 32 Page 20 of 32

at general natural language tasks, it is not optimized for handling the technical intrica-
cies of code or domain-specific language. CodeT5, with its specialized pre-training on
code data, captures the semantic nuances of code and technical terminology more effec-
tively, allowing it to generate more contextually accurate titles for tasks that involve
both natural language and code. This makes CodeT5 superior for tasks like title genera-
tion for bug reports, where understanding the technical context is critical.

Summary: Overall, the experimental results confirm that the use of the pre-trained CodeT5 model
significantly enhances the model’s ability to generate high-quality titles for both template-based and
non-template-based bug reports, outperforming both code language models and general natural lan-
guage models. CodeT5’s specialized pre-training, which incorporates a deep understanding of both
technical code and natural language, allows it to generate more accurate and contextually relevant
titles than models focused solely on code generation or natural language processing.

5.4 RQ4: comparison with baselines via human evaluation

In this RQ, we conducted a human study to evaluate the quality of the question titles
generated by the title generation baseline (i.e., iTAPE) and our proposed approach
TAB. The evaluation was performed using three criteria: similarity, naturalness,
and informativeness. The scoring scale of these criteria ranges from 1 to 4, where a
higher score indicates a better quality of the generated titles. This human evaluation
methodology has been commonly used in previous studies for similar tasks (Wei
2019), ensuring the reliability and validity of the evaluation process.

• Similarity. This criterion measured the degree of similarity between the gener-
ated titles and the ground truth titles. Evaluators were asked to assess how well
the generated titles captured the essence of the ground-truth title and aligned
with the intended meaning.

Table 3 Impact of Pre-trained
Models on TAB Performance
Results

Bold value indicates the highest score in the same dataset and for the
same evaluation metric

Data Pre-trained models METEOR ROUGE-L chrF(AF)

Within CodeGen 21.19 12.58 32.16
Unixcoder 25.85 32.31 28.99
T5 26.59 32.33 33.74
CodeT5 26.65 33.31 33.91

Cross CodeGen 21.93 12.62 32.2
Unixcoder 26.48 31.98 28.73
T5 26.5 32.4 33.4
CodeT5 27.12 32.86 33.57

Non-tem-
plate-
based

CodeGen 19.78 11.35 30.85
Unixcoder 22.46 28.56 28.16
T5 22.39 28.06 30.96
CodeT5 23.37 29.31 32.34

Automated Software Engineering (2025) 32:32 Page 21 of 32 32

• Naturalness. The naturalness criterion focused on the grammaticality and flu-
ency of the generated titles. Evaluators evaluated how well the titles were com-
posed in terms of language usage, syntax, and overall coherence.

• Informativeness. The informativeness criterion gauged the amount of content
conveyed by the generated titles. Evaluators assessed the extent to which the
titles provided relevant and useful information about the question post or issue,
regardless of their grammatical correctness or fluency.

We randomly selected 160 issues from the test set. For each issue, we gathered the
actual title as well as two titles generated by iTAPE and TAB. To evaluate these
generated titles, we enlisted four graduate students who are knowledgeable about
GitHub issues but are not co-authors of the paper. Each student reviewed 40 issues
using three criteria: similarity, naturalness, and informativeness. They were permit-
ted to use the internet to investigate any unfamiliar concepts related to the issues.
Furthermore, to maintain the quality of the evaluations, each student was restricted
to assessing only 20 issues in a half-day session.

The evaluation results for the task are presented in Fig 4, where the performance
of TAB or iTAPE is assessed based on the three evaluation criteria: similarity, natu-
ralness, and informativeness.

In terms of the similarity criterion, TAB surpasses iTAPE with an average score
of 3.6. This suggests that the titles produced by TAB are regarded as high qual-
ity and closely align with the ground-truth titles. The incorporation of title hints by
developers plays a significant role in the elevated similarity scores attained by TAB.

Regarding the naturalness criterion, both TAB and iTAPE show comparable per-
formance. This is consistent with the expectation that titles produced by deep learn-
ing models are typically readable and understandable to users.

In the context of the informativeness criterion, TAB outperforms iTAPE by pro-
ducing more comprehensive titles. This indicates that TAB, by taking into account
developer intent and leveraging a pre-trained CodeT5 model, is better at managing
long-term dependencies in the question or issue body and demonstrates superior
semantic understanding.

Given the subjectivity inherent in human evaluation, we use Fleiss Kappa (Fleiss
1971) to assess the consistency of the scoring results among the students. The over-
all Kappa value obtained for the task is 0.774, indicating substantial agreement
among the students in their assessments. Following the scoring process, the students
engaged in discussions to address their disagreements and arrive at a consensus,
which helps to mitigate bias in the human evaluation of our study.

Summary: In terms of similarity, naturalness, and informativeness criteria, the human evaluation result
supports the superior performance of TAB when compared to iTAPE.

 Automated Software Engineering (2025) 32:32 32 Page 22 of 32

6 Discussion

6.1 The impact of varying document component analyzer(DCA)

Given the maturity of sentence classification techniques, we chose two well-estab-
lished methods–CNN (Lawrence et al. 1997) and Devlin etal. (2018)–to perform
the task of sentence classification. CNN is a relatively simple yet effective method,
while BERT represents a more advanced state-of-the-art approach. For the CNN
model, we adopted the architecture proposed by Huang et al. (2018), which has been
used to classify bug report sentences from GitHub. For BERT, we utilized BER-
TOverflow (Tabassum etal. 2020), a BERT model pre-trained on StackOverflow
data, which has demonstrated excellent performance in software engineering tasks.
We then fine-tuned BERTOverflow on sentences from template-based bug reports.

We conducted experiments on template-based bug reports to compare the perfor-
mance of CNN and BERT in classifying the four types of sentences: Description,
Reproduction, Expected Behavior, and Others. Table 4 presents the precision, recall,
and F1-scores for both models. The results show that BERT consistently outper-
forms CNN across all categories, achieving higher precision, recall, and F1-scores,
demonstrating its superior capability in sentence classification tasks within the soft-
ware domain.

Furthermore, we investigated the impact of different classifiers on the quality of
titles generated by TAB. Specifically, we used CNN and BERT to classify non-tem-
plate-based bug reports, followed by the application of TAB to generate titles based
on the classified components. As shown in Table 5, the quality of the classifier has a

Fig. 4 The average score value of our human study by considering similarity, naturalness, and informa-
tiveness for the task

Automated Software Engineering (2025) 32:32 Page 23 of 32 32

direct effect on the performance of TAB. A more accurate classifier, such as BERT,
improves the overall title generation quality, underscoring the importance of robust
sentence classification for enhancing TAB’s effectiveness.

6.2 Why our TAB works better

Our TAB demonstrates exceptional performance due to the specially designed
prompt tokens and advanced title generation model, which are specifically crafted
to address the complexities of bug report data. The key factors contributing to its
effectiveness are:

Pre-Trained CodeT5 Model: TAB employs prompt tokens to handle different
sections of bug reports, such as descriptions, reproduction, expected behavior, and
others. By using prompt tokens, the system can segment the various components
of the bug report, helping the model to accurately grasp the semantics and logical
relationships of each part. TAB leverages the CodeT5 model, allowing it to cap-
ture deep contextual information between different sections of the bug report. This
comprehensive context awareness provides CodeT5 with a significant advantage in
generating high-quality titles, improving both the accuracy of the titles and ensuring
that they cover the critical aspects of the bug report. By combining prompt tokens
and the CodeT5 model, TAB can effectively handle complex bug reports, delivering
clear and precise title generation results, thus enhancing overall issue tracking and
management efficiency.

Table 4 The performance
comparison of CNN and BERT

Bold value indicates the highest score in the same dataset and for the
same evaluation metric

Label Method Precision Recall F1-score

Description CNN 73.49 84.02 78.40
BERT 88.20 92.54 90.32

Reproduction CNN 85.95 88.34 87.13
BERT 93.01 93.18 93.09

Expected CNN 86.34 77.49 81.68
BERT 92.67 91.99 92.33

Others CNN 95.63 89.42 92.42
BERT 96.96 92.72 94.79

Accuracy CNN – – 84.91
BERT – – 92.61

Table 5 The performance of
TAB for non-templated-based
bug reports with different
classifiers

Bold value indicates the highest score in the same dataset and for the
same evaluation metric

Classifiers METEOR ROUGE-L chrF(AF)

CNN 14.97 28.73 29.09
BERT 15.62 30.95 30.30

 Automated Software Engineering (2025) 32:32 32 Page 24 of 32

Document Component Analyzer (DCA): One of the strengths of TAB is its
ability to process both template-based and non-template-based bug reports. For non-
template-based data, a trained DCA is used to segment and categorize the content
before it is processed by TAB. This preprocessing step helps in organizing the input
data effectively, ensuring that even unstructured bug reports are formatted in a way
that can be accurately processed by the Title Generation Model(TGM).
This structure extraction improves the overall quality of the generated titles and
ensures that key bug report information is appropriately represented.

Template-Based Bug Report Generation: TAB is designed to convert non-
template-based bug reports into a standardized format. This templating ensures
uniformity across bug reports, making it easier for the Title Generation
Model(TGM) to focus on extracting relevant information without being hindered
by inconsistencies in bug report formatting. This transformation improves the mod-
el’s ability to generalize across diverse data and boosts the performance of the title
generation task, as seen in its superior handling of both structured and unstructured
reports.

Scalability and Adaptability: TAB is not limited to a specific bug-tracking sys-
tem or domain. Its modular design allows it to be adapted for various software engi-
neering title generation tasks, making it highly versatile. The offline training phase,
which leverages fine-tuned models like Devlin etal. (2018) and S. Wang etal. (2021),
ensures that TAB can be fine-tuned for other types of tasks with minimal adjust-
ments. This flexibility ensures that TAB is not only effective for the current dataset
but can also be extended to handle other software engineering issues.

Comprehensive Coverage of Bug Reports: By splitting the bug reports into
four subsegments–each representing critical aspects of the report–TAB ensures that
no vital information is overlooked during the title generation process. This segmen-
tation allows the model to focus on specific, high-priority sections of the bug report,
leading to more informative and concise titles. It also ensures that the generated
titles reflect the most important details, enhancing the clarity and usefulness of the
titles for bug tracking and prioritization.

These components collectively enable TAB to outperform existing methods like
iTAPE by delivering more accurate and contextually appropriate titles, regardless of
whether the bug reports are template-based or non-template-based. The robustness
and adaptability of our approach ensure high performance across different types of
bug report data, making TAB a superior tool for automated title generation.

6.3 The usage scenario of TAB

The primary usage scenario for TAB is as a plugin for bug report submission within
bug tracking systems. For users preparing to submit a new bug report, TAB auto-
matically generates a high-quality, concise title based on the content of the report.
This reduces the burden on users to manually craft titles and ensures that submitted
reports contain clear, informative titles from the start.

Automated Software Engineering (2025) 32:32 Page 25 of 32 32

In addition to generating titles, TAB can also evaluate the reasonableness of exist-
ing bug report titles by comparing them to the content of the bug report. If a title
does not adequately reflect the core issues or information presented in the report,
TAB can suggest improvements or flag the title for revision. This feature helps
ensure that all bug reports are consistently titled, contributing to the overall quality
of issue tracking and communication.

By integrating TAB into bug-tracking systems, developers and project managers
can ensure that all bug reports contain clear, concise, and informative titles, which
can significantly improve the efficiency of issue triage and resolution. A well-struc-
tured title allows developers to quickly understand the core issue, aiding in quicker
prioritization and assignment. This can be particularly valuable in large-scale pro-
jects with numerous contributors, where maintaining consistency in bug reporting is
crucial for effective collaboration.

Application in Large Projects: TAB is particularly beneficial in large-scale soft-
ware development environments, where there may be hundreds or thousands of bug
reports generated by diverse contributors. The standardized titles produced by TAB
can greatly enhance communication between teams by ensuring that each bug report
is easy to understand at a glance. This improves collaboration across geographically
dispersed teams and ensures that critical issues are addressed promptly.

Adaptability Across Domains: Although initially designed for bug report title
generation, TAB’s flexible architecture allows it to be adapted to various other
software engineering tasks that require title or summary generation. For example,
TAB could be applied to project management systems or documentation workflows
where concise and informative summaries are crucial. Its integration into different
domains highlights its versatility and potential to streamline content management
and improve information accessibility across the software development lifecycle.

By ensuring clarity and consistency in bug report titles, TAB not only enhances
issue tracking and resolution but also contributes to more organized, scalable, and
effective bug management practices in large projects.

6.4 Threats to validity

One threat to validity is the evaluation metrics of issue title generation. To evaluate
the performance of the title generation method, we employ three metrics(ROUGE-
L, METEOR, chrF). Neither TAB nor baseline performs well enough on these eval-
uation metrics. Therefore, conclusions(i.e. our TAB performs better than baselines)
drawn based on these metrics are not convincing enough.

The second threat to validity is that the dataset used for training and evaluation
may not be fully representative of all possible bug report scenarios. While we have
made efforts to collect a diverse and comprehensive dataset from GitHub reposito-
ries, there might still be variations in bug reporting practices across different pro-
jects and domains that are not captured in our dataset. This could potentially limit
the generalizability of our findings.

Additionally, the performance of TAB might be influenced by the quality and
structure of the input data. For example, non-template-based bug reports can vary

 Automated Software Engineering (2025) 32:32 32 Page 26 of 32

significantly in their format and content, making it challenging for the model to
generate accurate titles consistently. Although our Document Component
Analyzer(DCA) helps to mitigate this issue by organizing the input data, there is
still a risk that the variability in non-template-based reports could impact the perfor-
mance of TAB.

7 Related work

7.1 Analysis of bug report

Due to the widespread use of bug tracking systems by developers to discuss various
issues in software development, Ko and Ko and Chilana (2011) conducted a qualita-
tive analysis of the design discussions found in the complete set of closed bug reports
from three open-source projects: Firefox, Linux kernel, and Facebook API. They dis-
covered that many of the discussions centered around whether to adhere to the original
design intentions or to adjust based on user needs. They also recommended redesign-
ing online discussion tools to facilitate clearer suggestions. Sahoo etal. (2010) stud-
ied the reproducibility of bug reports by randomly sampling six server application
reports. They found that in 77% of cases, a single request was sufficient to reproduce
the bug. Xuan etal. (2012) proposed the first model that uses a sociotechnical approach
to determine developer priorities within bug tracking systems. Specifically, through
the analysis of tasks within the bug report repository, they concluded that establishing
developer priorities helps enhance the handling of bug reports, particularly in the tri-
age process. Bhattacharya etal. (2013) defined several metrics to assess the quality of
Android bug reports. On the other hand, they compared Google’s bug tracking system
with Bugzilla and Jira, finding that although Google’s bug tracker is more widely used
in Android applications, it offers comparatively less management support. Wang and
Zhang (2012) established a state transition model based on historical data and pro-
posed a method to predict the number of bugs in various states of bug reports. This
method can be used to forecast the future bug-fixing performance of a project.

7.2 Applications of bug report titles

Many studies have utilized bug report titles as a feature for analyzing bug reports.
For instance, Sureka and Indukuri (2010) investigate the relationship between bug
report titles and bug importance levels. Similarly, Tian etal. (2012) and Chaparro
etal. (2019) identify duplicated bug reports using titles as one of their features.
Additionally, Sun et al. (2017) and Ruan et al. (2019) focus on recovering the miss-
ing links between bug reports and commits based on their similarities, where bug
report titles are regarded as important textual features. Other research also exam-
ines the impact of bug report titles on bug triaging (Chaparro etal. 2019) and Mills
etal. (2018). These studies highlight the importance of improving the quality of bug
report titles, as such enhancements could significantly benefit downstream research
related to bug reports.

Automated Software Engineering (2025) 32:32 Page 27 of 32 32

7.3 Generation task for bug reports

There are not many kinds of studies devoted to the generation task for bug reports.
Most of the previous studies focused on extracting important sentences and gener-
ating summaries of bug reports. For example, Rastkar etal. (2010); Rastkar et al.
(2014) proposed a conversion-based summarizer for bug reports by identifying
important sentences of bug reports automatically. Jiang et al. (2017) summarize bug
reports in consideration of the reporters’ authorship. Mani etal. (2012) and Lotufo
et al. (2015) proposed unsupervised bug report summarization approaches based on
noise reducer or heuristic rules.

Besides bug report summarization tasks, the title generation for bug reports has
become a new research direction. Chen etal. (2020) proposed an automatic method
to generate titles for bug reports. They formulated title generation into a one-sen-
tence summarization task. Different from their work, this work aims to generate
titles for semi-structured bug reports which is a multi-sentence summarization task.

7.4 Other document generation for software artifacts

Prior studies have proposed diverse automated document generation approaches
for software artifacts other than commit messages, such as code comments (Srid-
hara etal. 2010; Haiduc etal. 2010; Moreno etal. 2013; Wong etal. 2013; McBur-
ney and McMillan 2014, 2016; Iyer etal. 2016; Hu etal. 2018, 2019; Wan etal.
2018; Zhang etal. 2020), release notes (Moreno etal. 2014; Moreno et al. 2016).

As for code comments generation, Hu etal. (2018, 2019) proposed an atten-
tional encoder-decoder model-based approach to generate comments for Java
methods. Wan etal. (2018) improved the encoder-decoder-based approach by
using a hybrid encoder and a reinforcement learning-based decoder to generate
code comments. Zhang etal. (2020) proposed a retrieval-based neural source code
summarization approach that can take advantage of both neural and retrieval-
based techniques.

As for release notes generation, Abebe et al. (2016) proposed a machine learn-
ing-based approach for automatically identifying the issues to be mentioned in
release notes. Moreno etal. (2014); Moreno et al. (2016) proposed ARENA to
generate release notes. ARENA first summarizes changes in a release and then
integrates these summaries with their related information in the issue tracker.

These studies have inspired our work to generate titles for semi-structured bug
reports to facilitate downstream tasks.

8 Conclusion

Writing high-quality bug report titles is crucial for efficient software development
but remains a challenging task for many reporters. Although existing automated
approaches for bug report title generation make progress, they often produce low-
quality titles that can mislead developers and hinder the debugging process. In

 Automated Software Engineering (2025) 32:32 32 Page 28 of 32

this paper, we propose TAB, an automated framework designed to generate accu-
rate and meaningful titles for bug reports. TAB is particularly effective for both
template-based and non-template-based bug reports. For template-based reports,
TAB directly generates titles by leveraging the structured information within the
report. For non-template-based reports, TAB first applies a classification step to
segment the report into meaningful components, then generates titles based on
these classifications. We evaluate TAB on two datasets–one containing template-
based bug reports and the other containing non-template-based reports–using
several automatic metrics. The results demonstrate that TAB consistently outper-
forms existing approaches, showcasing its robustness and effectiveness in gen-
erating high-quality titles for a variety of bug report formats. This makes TAB a
valuable tool for improving the accuracy and efficiency of bug triage in software
development.

Acknowledgements This work was supported in part by the National Natural Science Foundation of
China (No. 62372071), the Scientific and Technological Research Program of Chongqing Municipal
Education Commission (No. KJQN202300547), the Chongqing Municipal Construction Science and
Technology Plan Project (Chengke Zi 2024 No. 8-7), the State Key Laboratory of Intelligent Vehicle
Safety Technology (No. IVSTSKL-202412) and the Natural Science Foundation of Chongqing (No.
CSTB2023NSCQ-MSX0914).

References

Abebe, S.L., Ali, N., Hassan, A.E.: An empirical study of software release notes. Empir. Softw. Eng.
21(3), 1107–1142 (2016)

Anonymous.: (2024). https:// anony mous. 4open. scien ce/r/ TAB- 7E70/
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv: 1607. 06450 (2016)
Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.: What makes a good

bug report? In: Proceedings of the 16th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pp. 308–318 (2008)

Bhattacharya, P., Ulanova, L., Neamtiu, I., Koduru, S.C.: An empirical analysis of bug reports and
bug fixing in open source android apps. In: 2013 17th European Conference on Software Mainte-
nance and Reengineering, pp. 133–143 (2013). https:// doi. org/ 10. 1109/ CSMR. 2013. 23

Chaparro, O., Lu, J., Zampetti, F., Moreno, L., Di Penta, M., Marcus, A., Bavota, G., Ng, V.: Detect-
ing missing information in bug descriptions. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pp. 396–407 (2017)

Chaparro, O., Bernal-Cárdenas, C., Lu, J., Moran, K., Marcus, A., Di Penta, M., Poshyvanyk, D., Ng,
V.: Assessing the quality of the steps to reproduce in bug reports. In: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 86–96 (2019)

Chaparro, O., Plorez, J.M., Singh, U., Marcus, A.: Reformulating queries for duplicate bug
report detection. In: In Proceedings of The26th International Conference on Software
Analysis,Evolution and Reengineering, pp. 218–229, IEEE (2019)

Chaparro, O., Plorez, J.M., Singh, U., Marcus, A.: Deeptriage:explor-ing the effectiveness of deep
learning for bug triaging. In: In Proceedings of the Indiajoint International Conference on Data
Science and Management of Data, pp. 171–179, Association for Computing Machinery (2019)

Chen, S., Xie, X., Yin, B., Ji, Y., Chen, L., Xu, B.: Stay professional and efficient: automatically
generate titles for your bug reports. In: 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 385–397, IEEE (2020)

Davies, S., Roper, M.: What’s in a bug report? In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pp. 1–10 (2014)

https://anonymous.4open.science/r/TAB-7E70/
http://arxiv.org/abs/1607.06450
https://doi.org/10.1109/CSMR.2013.23

Automated Software Engineering (2025) 32:32 Page 29 of 32 32

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint arXiv: 1810. 04805 (2018)

Devlin, M.C., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for lan-
guage understanding. In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186, Association for Computational Linguistics (2019)

Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378–382
(1971)

Guo, S.L., N. Duan, Y.W., M. Zhou, J.Y.: Unixcoder: Unified cross-modal pre-training for code represen-
tation. In: in Proceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, S. Muresan, P. Nakov,
and A. Villavicencio, Eds, pp. 7212–7225, Association for Computational Linguistics (2022)

Haiduc, S., Aponte, J., Moreno, L., Marcus, A.: On the use of automated text summarization techniques
for summarizing source code. In: Reverse Engineering (WCRE), 2010 17th Working Conference
On, pp. 35–44, IEEE (2010)

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation with hybrid lexical and syntactical
information. Empir. Softw. Eng. 25, 2179 (2019)

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: Proceedings of the 26th Con-
ference on Program Comprehension, pp. 200–210 (2018)

Huang, Q., Xia, X., Lo, D., Murphy, G.C.: Automating intention mining. IEEE Trans. Softw. Eng.
46(10), 1098–1119 (2018)

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention
model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), vol. 1, pp. 2073–2083 (2016)

Jiang, H., Zhang, J., Ma, H., Nazar, N., Ren, Z.: Mining authorship characteristics in bug repositories.
Sci. China Inf. Sci. 60(1), 1–16 (2017)

Karim, M.R., Ihara, A., Yang, X., Iida, H., Matsumoto, K.: Understanding key features of high-impact
bug reports. In: 2017 8th International Workshop on Empirical Software Engineering in Practice
(IWESEP), pp. 53–58, IEEE (2017)

Ko, A.J., Chilana, P.K.: Design, discussion, and dissent in open bug reports. In: Proceedings of the
2011 IConference. iConference ’11, pp. 106–113. Association for Computing Machinery, New
York, NY, USA (2011). https:// doi. org/ 10. 1145/ 19407 61. 19407 76

Ko, A.J., Myers, B.A., Chau, D.H.: A linguistic analysis of how people describe software problems.
In: Visual Languages and Human-Centric Computing (VL/HCC’06), pp. 127–134, IEEE (2006)

Lavie, A., Agarwal, A.: Meteor: An automatic metric for mt evaluation with high levels of correlation
with human judgments. In: Proceedings of the Second Workshop on Statistical Machine Transla-
tion. StatMT ’07, pp. 228–231. Association for Computational Linguistics, USA (2007)

Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network
approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

Li, H., Yan, M., Sun, W., Liu, X., Wu, Y.: A first look at bug report templates on GitHub. J. Syst.
Softw. 202, 111709 (2023)

Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: In Proceedings of the Work-
shop on Text Summarization Branches Out (WAS 2004) (2004)

Liu, P., Fu, J., Hayashi, H., et al.: Pre-train, prompt, and predict: a systematic survey of prompting
methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X.: Neural-machine-translation-based commit
message generation: how far are we? In: Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, pp. 373–384 (2018)

Liu, Q., Liu, Z., Zhu, H., Fan, H., Du, B., Qian, Y.: Generating commit messages from diffs using
pointer-generator network. In: 2019 IEEE/ACM 16th International Conference on Mining Soft-
ware Repositories (MSR), pp. 299–309, IEEE (2019)

Lotufo, R., Malik, Z., Czarnecki, K.: Modelling the hurried bug report reading process to summarize
bug reports. Empir. Softw. Eng. 20(2), 516–548 (2015)

Mani, S., Catherine, R., Sinha, V.S., Dubey, A.: Ausum: approach for unsupervised bug report sum-
marization. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foun-
dations of Software Engineering, pp. 1–11 (2012)

http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/1940761.1940776

 Automated Software Engineering (2025) 32:32 32 Page 30 of 32

McBurney, P.W., McMillan, C.: Automatic source code summarization of context for java methods.
IEEE Trans. Softw. Eng. 42(2), 103–119 (2016)

McBurney, P.W., McMillan, C.: Automatic documentation generation via source code summarization
of method context. In: Proceedings of the 22nd International Conference on Program Compre-
hension, pp. 279–290, ACM (2014)

Mills, C., Pantiuchina, J., Parra, E., Bavota, G., Haiduc, S.: Are bug reports enough for text retrieval-
based bug localiza-tion? In: In Proceedings of the International Conference on Software Mainte-
nance and Evolution, pp. 381–392, IEEE (2018)

Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A., Canfora, G.: Arena: an approach for
the automated generation of release notes. IEEE Trans. Softw. Eng. 43(2), 106–127 (2016)

Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L., Vijay-Shanker, K.: Automatic genera-
tion of natural language summaries for java classes. In: Program Comprehension (ICPC), 2013
IEEE 21st International Conference On, pp. 23–32, IEEE (2013)

Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A., Canfora, G.: Automatic generation of
release notes. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pp. 484–495, ACM (2014)

Nijkamp, E., Pang, B., Hayashi, L. H. Tu, Wang, H., Zhou, Y., Savarese, S., Xiong, C.: Codegen: An
open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:
2203. 13474 (2022)

Popović, M.: chrf: character n-gram f-score for automatic MT evaluation. In: Proceedings of the Tenth
Workshop on Statistical Machine Translation, pp. 392–395 (2015)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.:
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (2023).
https:// arxiv. org/ abs/ 1910. 10683

Rastkar, S., Murphy, G.C., Murray, G.: Automatic summarization of bug reports. IEEE Trans. Softw.
Eng. 40(4), 366–380 (2014)

Rastkar, S., Murphy, G.C., Murray, G.: Summarizing software artifacts: a case study of bug reports. In:
2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, pp. 505–514,
IEEE (2010)

Roy, D., Fakhoury, S., Arnaoudova, V.: Reassessing automatic evaluation metrics for code summarization
tasks. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pp. 1105–1116 (2021)

Ruan, H., Chen, B., Peng, X., Zhao, W.: Deeplink: re-covering issue-commit links based on deep learn-
ing. J. Syst. Softw. 158, 110406 (2019)

Sahoo, S.K., Criswell, J., Adve, V.: An empirical study of reported bugs in server software with implica-
tions for automated bug diagnosis. In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 1, pp. 485–494 (2010). https:// doi. org/ 10. 1145/ 18067 99. 18068 70

Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. arXiv
preprint arXiv: 1508. 07909 (2015)

Sharma, S., El Asri, L., Schulz, H., Zumer, J.: Relevance of unsupervised metrics in task-oriented dia-
logue for evaluating natural language generation. CoRR abs/1706.09799 (2017)

Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., Vijay-Shanker, K.: Towards automatically generating
summary comments for java methods. In: Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, pp. 43–52, ACM (2010)

Sun, Y., Wang, Q., Yang, Y.: Frlink: improving the recovery of miss-ing issue-commit links by revisiting
file relevance. Inf. Sofiw. Technol. 84, 33–47 (2017)

Sureka, A., Indukuri, K.V.: Linguistic analysis of bugreport titles with respect to the dimension of bug
importance. In: In Proceedings of the 3rd Annual Bangalore Conference, pp. 1–6, Association for
Computing Machinery (2010)

Tabassum, J., Maddela, M., Xu, W., Ritter, A.: Code and named entity recognition in stackoverflow.
arXiv preprint arXiv: 2005. 01634 (2020)

Tian, Y., Sun, C., Lo, D.: Improved duplicate bug re-port identification. In: In Proceedings of the 16th
European Conference on SofiwareMaintenance and Reengineering, pp. 385–390, IEEE (2012)

Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., Yu, P.S.: Improving automatic source code sum-
marization via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 397–407 (2018)

http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
https://arxiv.org/abs/1910.10683
https://doi.org/10.1145/1806799.1806870
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/2005.01634

Automated Software Engineering (2025) 32:32 Page 31 of 32 32

Wang, M.W., Y. Liu, Y.W., Shenyang, R.W.: Understanding and facilitating the co-evolution of produc-
tion and test code. In: 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 272–283, IEEE (2021)

Wang, J., Zhang, H.: Predicting defect numbers based on defect state transition models. In: Proceedings
of the 2012 ACM-IEEE International Symposium on Empirical Software Engineering and Measure-
ment, pp. 191–200 (2012). https:// doi. org/ 10. 1145/ 23722 51. 23722 87

Wei, B.: Retrieve and refine: Exemplar-based neural comment generation. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 1250–1252 (2019).
https:// doi. org/ 10. 1109/ ASE. 2019. 00152

Wong, E., Yang, J., Tan, L.: Autocomment: Mining question and answer sites for automatic comment
generation. In: Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference On, pp. 562–567, IEEE (2013)

Xuan, J., Jiang, H., Ren, Z., Zou, W.: Developer prioritization in bug repositories. In: 2012 34th Inter-
national Conference on Software Engineering (ICSE), pp. 25–35 (2012). https:// doi. org/ 10. 1109/
ICSE. 2012. 62272 09

Zhang, T., Chen, J., Luo, X., Li, T.: Bug reports for desktop software and mobile apps in GitHub: What’s
the difference? IEEE Softw. 36(1), 63–71 (2017)

Zhang, J., Wang, X., Zhang, H., Sun, H., Liu, X.: Retrieval-based neural source code summarization. In:
Proceedings of the 42nd International Conference on Software Engineering (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Xiao Liu1 · Yinkang Xu1 · Weifeng Sun1 · Naiqi Huang1 · Song Sun2 · Qiang Li1 ·
Dan Yang3 · Meng Yan1

 * Weifeng Sun
 weifeng.sun@cqu.edu.cn

 * Meng Yan
 mengy@cqu.edu.cn

 Xiao Liu
 cdjx@cqu.edu.cn

 Yinkang Xu
 xuyinkang@stu.cqu.edu.cn

 Naiqi Huang
 npcxh@cqu.edu.cn

 Song Sun
 20220033@cqnu.edu.cn

 Qiang Li
 liqiang@stu.cqu.edu.cn

 Dan Yang
 dyang@cqu.edu.cn

https://doi.org/10.1145/2372251.2372287
https://doi.org/10.1109/ASE.2019.00152
https://doi.org/10.1109/ICSE.2012.6227209
https://doi.org/10.1109/ICSE.2012.6227209

 Automated Software Engineering (2025) 32:32 32 Page 32 of 32

1 School of Big Data and Software Engineering, Chongqing University, Chongqing, China
2 Chongqing Normal University, Chongqing, China
3 Southwest Jiaotong University, Chengdu, China

	Tab: template-aware bug report title generation via two-phase fine-tuned models
	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Overview
	3.2 TAB for bug report title generation
	3.2.1 Dataset construction
	3.2.2 Offline training phase
	3.2.3 Online inference phase

	4 Experimental setup
	4.1 Research questions
	4.2 Baselines
	4.3 Evaluation settings
	4.4 Evaluation metrics
	4.5 Evaluation methods
	4.5.1 Evaluation on template-based bug reports
	4.5.2 Evaluation on non-template-based bug reports

	5 Results
	5.1 RQ1:TAB + template-based bug reports
	5.2 RQ2: TAB + non-template-based bug reports
	5.3 RQ3: impact of pre-trained models on TAB performance
	5.4 RQ4: comparison with baselines via human evaluation

	6 Discussion
	6.1 The impact of varying document component analyzer(DCA)
	6.2 Why our TAB works better
	6.3 The usage scenario of TAB
	6.4 Threats to validity

	7 Related work
	7.1 Analysis of bug report
	7.2 Applications of bug report titles
	7.3 Generation task for bug reports
	7.4 Other document generation for software artifacts

	8 Conclusion
	Acknowledgements
	References

