
Revisiting and Improving Retrieval-Augmented
Deep Assertion Generation

Weifeng Sun∗, Hongyan Li∗, Meng Yan†, Yan Lei, Hongyu Zhang
School of Big Data and Software Engineering, Chongqing University, Chongqing, China

{weifeng.sun, hongyan.li, mengy, yanlei, hyzhang}@cqu.edu.cn

Abstract—Unit testing validates the correctness of the unit
under test and has become an essential activity in software
development process. A unit test consists of a test prefix that
drives the unit under test into a particular state, and a test
oracle (e.g., assertion), which specifies the behavior in that
state. To reduce manual efforts in conducting unit testing, Yu
et al. proposed an integrated approach (integration for short),
combining information retrieval with a deep learning-based
approach, to generate assertions for a unit test. Despite being
promising, there is still a knowledge gap as to why or where
integration works or does not work. In this paper, we describe an
in-depth analysis of the effectiveness of integration. Our analysis
shows that: ① The overall performance of integration is mainly
due to its success in retrieving assertions. ② integration struggles
to understand the semantic differences between the retrieved
focal-test (focal-test includes a test prefix and a unit under
test) and the input focal-test, resulting in many tokens being
incorrectly modified; ③ integration is limited to specific types
of edit operations (i.e., replacement) and cannot handle token
addition or deletion. To improve the effectiveness of assertion gen-
eration, this paper proposes a novel retrieve-and-edit approach
named EDITAS. Specifically, EDITAS first retrieves a similar
focal-test from a pre-defined corpus and treats its assertion
as a prototype. Then, EDITAS reuses the information in the
prototype and edits the prototype automatically. EDITAS is more
generalizable than integration because it can ❶ comprehensively
understand the semantic differences between input and similar
focal-tests; ❷ apply appropriate assertion edit patterns with
greater flexibility; and ❸ generate more diverse edit actions
than just replacement operations. We conduct experiments on
two large-scale datasets and the experimental results demonstrate
that EDITAS outperforms the state-of-the-art approaches, with
an average improvement of 10.00%-87.48% and 3.30%-42.65%
in accuracy and BLEU score, respectively.

Index Terms—Unit Testing, Assertion Generation, Test Asser-
tion, Deep Learning

I. INTRODUCTION

Unit testing is a crucial activity of software development,
which involves testing an individual unit of software applica-
tions, such as a method, a class, or a module. While integration
and system testing assess the overall performance of a system,
unit testing focuses on validating that each unit of code works
as intended and conceived by the developer, thereby detecting
and diagnosing failures before they propagate throughout the
system and preventing regressions. Effective unit tests can
improve the quality of software, reduce the incidence, and

∗ Both authors contributed equally to this research
† Meng Yan is the corresponding author

1 @Test

2 public void test01() throws Throwable {

3 CategoryAxis3D categoryAxis3D0 = new CategoryAxis3D();

4 categoryAxis3D0.setVisible(false);

5 CategoryAxis3D categoryAxis3D1 = new CategoryAxis3D();

6 boolean boolean0 = categoryAxis3D1.equals(categoryAxis3D0);

7 assertFalse(categoryAxis3D0.isVisible());

8 assertFalse(boolean0);

9 }

Fig. 1. Example of a unit test case.

cost of software failures [1], [2], as well as enhance the entire
software development process.

A unit test comprises a test prefix, which is a series of
statements that manipulate a unit under test to attain a specific
state, and a test oracle, which typically includes an assertion
that specifies the expected behavior under that state [3]. For
instance, in the unit test illustrated in Figure 1, lines 3-6 consti-
tute the test prefix, which creates two CategoryAxis3D ob-
jects, with categoryAxis3D0 set to invisible; testers utilize
a boolean variable to check whether categoryAxis3D0 and
categoryAxis3D1 are equal. On lines 7-8, the assertion
specifies the expected outcome, which tests that after executing
the test prefix, the visibility property of categoryAxis3D0
should be False and that the two objects should not be
equivalent.

Despite the significant benefits of testing, creating effective
unit tests is a non-trivial and time-consuming task. Previous
studies have indicated that developers can spend more than
15% of their time on test generation [4]. To streamline unit
test generation, various automated testing tools have been
proposed, such as Randoop [5] and EvoSuite [6]. However,
these test-generation tools prioritize generating high-coverage
tests over meaningful assertions and face challenges in com-
prehending the intended program behavior. For example, an
industrial evaluation [7] of assertions generated by EvoSuite
has shown that “in manually written tests, the assertions are
meaningful and useful unlike the generated ones.” As a result,
a lot of manual effort is still required in conducting unit testing.

To reduce the effort for oracle generation, Watson et al.
introduced ATLAS [8], a deep learning (DL)-based technique
that trains a neural generative model on an extensive corpus
of existing unit tests. ATLAS operates by taking a pair
consisting of a test prefix and its focal method (i.e., the method

1123

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00090

under test) that encompasses both the method names and the
method bodies. For consistency with prior research [9], we
refer to such a pair as focal-test. ATLAS then generates an
assertion for the focal-test from scratch. Neural models, un-
like specification-mining-based approaches, are more flexible,
particularly when documentation is imprecise or incomplete.
Thus, ATLAS offers a more adaptable solution to the test
assertion problem. However, the effectiveness of ATLAS is
limited by several issues: 1) ATLAS generally prefers high-
frequency words in the corpus and may have trouble with
low-frequency words, such as project-specific identifiers. 2)
ATLAS has poor performance when generating long sequences
of tokens as assertions.

Recently, Yu et al. [9] proposed an information retrieval
(IR)-based assertion generation method, including IR-based
assertion retrieval (IRar) and retrieved-assertion adaptation
(RAadapt) techniques. IRar takes the same input as ATLAS
and retrieves the most similar assertion to the given focal-test
based on the Jaccard similarity coefficient [10]. Then, RAadapt

further adjusts the tokens in the retrieved assertion based on the
context. Furthermore, an integrated approach [9] (abbreviated
as Integration) that combines the IR-based approach with a
DL-based approach has been proposed to improve assertion
generation capabilities. The integrated method verifies the
compatibility between the retrieved assertion and the current
focal-test. If the compatibility exceeds a threshold, the re-
trieved assertion is returned as the final result. Otherwise, the
DL-based method generates the assertion. Experimental results
show that the integrated approach achieves higher accuracy
and BLEU score than ATLAS. While the performance is a
notable achievement in assertion generation research, knowl-
edge gaps still exist regarding why or where the proposed
technique is effective or ineffective.

To fill this gap in the literature, we first conduct a compre-
hensive evaluation of Integration to gain a better understanding
of its application scenarios. We conduct the empirical assess-
ment on two public datasets adopted by Yu et al. [9], namely
Dataold and Datanew. The main findings are:

• Integration relies mainly on the IR-based method for gen-
erating assertions. For instance, Integration utilizes the
IR-based approach to generate 80.06% of the assertions
for Datanew. Additionally, for Dataold and Datanew,
83.38% and 92.47% of correct assertions generated by
the IR-based approach are identical to the retrieved as-
sertions.

• Integration only replaces tokens during its adaptation
operation, making it challenging to generalize to complex
assertion generation scenarios.

• Integration incorrectly modifies assertions frequently,
even when the retrieved assertion matches the ground
truth exactly. When one token needs to be modified to
get the correct result, the average accuracy of Integration
is just 20.14% and drops to only 1.91% for more than
five tokens.

• Integration fails to comprehend the semantic differences
between focal-tests, resulting in many cases where re-

trieved assertions require modifications, but it is returned
directly as expected assertion.

Overall, our empirical study reaffirms previous findings
that based on the similarity of focal-test, we can always
find “almost correct” assertions that are very similar to the
correct ones. However, we also identify several limitations that
restrict the effectiveness and generalizability of Integration.
On the one hand, the single token replacement operation
struggles with complex assertion edit scenarios, resulting in
low accuracy (1.9%) of Integration when modifying more
than five tokens. On the other hand, Integration’s inability to
comprehend semantic differences between input and similar
focal-tests causes it to make incorrect editing actions or fail
to edit retrieved assertions when necessary.

To alleviate the above-mentioned limitations and achieve
higher levels of performance, this paper proposes EDITAS,
a novel retrieve-and-edit approach for assertion generation.
The effectiveness of IR implies that similar focal-tests’ as-
sertions can be reused. In other words, certain tokens in the
expected assertion are also highly probable to appear in the
retrieved assertion. The improvements by the specification-
mining-based and retrieved-assertion adaptation approaches
have revealed the significance of assertion patterns. Inspired
by this, EDITAS views the assertion from a similar focal-test
as a prototype and leverages a neural sequence-to-sequence
model to learn the assertion edit patterns used to modify the
prototype. Our motivation is that the retrieved assertion guides
the neural model on “how to assert” and the assertion edit
pattern highlights to the neural model “what to assert”.

EDITAS consists of two major components: a Retrieval
component and an Edit component. Given an input focal-test,
the Retrieval component obtains its similar focal-test from
a corpus and utilizes the retrieved focal-test’s corresponding
assertion as a prototype. In the Edit component, a sequence-
to-sequence neural network is trained to edit the prototype,
based on edit sequences representing the semantic differences
between the input and the similar focal-test. On the one hand,
EDITAS effectively mitigates the long assertion generation
problem, which is the performance bottleneck of ATLAS, by
editing assertions instead of generating them from scratch.
Additionally, EDITAS is more generalizable than Integration
because it can 1) comprehensively understand the semantic
differences between focal-tests; 2) apply appropriate assertion
edit patterns with greater flexibility; and 3) generate more
diverse edit actions than just replacement operations.

The IR-based assertion retrieval method (IRar), the
retrieved-assertion adaptation methods including RAH

adapt and
RANN

adapt, the integrated approach Integration, and ATLAS are
used as baselines. We evaluate EDITAS and the baselines on
both Dataold and Datanew datasets in terms of accuracy and
BLEU. The evaluation results show that EDITAS outperforms
all baselines across all metrics in assertion generation. Specif-
ically, EDITAS achieves the highest accuracy, outperforming
the baselines by 14.87%-70.15% and 5.12%-104.80% on the
two datasets, respectively.

In summary, the contributions of this paper include:

1124

(1) We conduct an in-depth analysis of the state-of-the-
art assertion generation method that combines DL and
IR techniques. Our analysis results provide valuable
insights for future research in this direction.

(2) We propose a novel retrieve-and-edit approach, namely
EDITAS, for assertion generation. EDITAS utilizes as-
sertions from similar focal-tests as prototypes and uses a
neural sequence-to-sequence model to learn the assertion
edit patterns.

(3) We conduct extensive experiments to evaluate our ap-
proach. The experimental results show that EDITAS
significantly outperforms all baselines.

(4) We open-source our replication package1, including the
dataset, the source code of EDITAS, the trained model,
and assertion generation results, for follow-up studies.

II. BACKGROUND AND RELATED WORK

A. DL-based Assertion Generation

With the rise of deep learning (DL), an increasing number
of software engineering tasks can be effectively tackled using
advanced DL techniques, such as code search [11], [12],
automated program repair [13]–[17], fault diagnosis [18], code
summarization [19]–[22], and code clone detection [23]–[27].
Watson et al. [8] recently proposed ATLAS, the first DL-based
assertion generation method. ATLAS employs Neural Machine
Translation (NMT) to generate assertions for a given focal-test,
which consists of a test method without any assertion (i.e.,
test prefix) and its focal method (i.e., the method under test),
including both method names and method bodies. To develop
ATLAS, Watson et al. first extracted Test-Assert Pairs (TAPs)
from GitHub projects that use the JUnit testing framework.
Each pair consists of a focal-test and its corresponding asser-
tion. The initial TAP set is then preprocessed into two datasets:
1) raw source code, where TAPs are simply tokenized (see the
top part of Figure 2), and 2) abstract code, where uncommon
tokens are further represented by their respective types and
sequential IDs from the raw source code (see the bottom
part of Figure 2). Ultimately, ATLAS generates a meaningful
assertion to verify the correctness of the focal method.

Recent research [28]–[30] has explored the potential of pre-
trained models, such as T5 and BART, for supporting the
assertion generation task through pre-training and fine-tuning.
Specifically, these approaches involve pre-training a transform
model using a large corpus of either source code or English
language, followed by fine-tuning it for assertion generation.
Dinella [3] proposed TOGA to address the assertion generation
problem by using a ranking architecture over a set of candidate
test assertions. TOGA employs grammar along with type-
based constraints to limit the generation space of candidates
and uses a transformer-based neural approach to obtain the
most probable assertions. We find that the formal implementa-
tion of TOGA [31], [32] requires a seed/approximate assertion
to determine the variables for constructing and optimizing the
candidate assertion set. Also, the seed/approximate assertion

1https://github.com/swf-cqu/EditAS

Raw source code
// test prefix:
testGetPatternsWhenColumnAndFactPatternAreNotNew () { mockPatterns
() ; doReturn (false) . when (plugin) . isNewColumn () ;
doReturn (false) . when (plugin) . isNewFactPattern () ; final
Set < PatternWrapper > patterns = plugin . getPatterns () ;
"<AssertPlaceHolder>" ; }
// focal‐method:
size () { return patternsByColumnNumber . size () ; }
// Assertion:
Assert . assertEquals (1 , patterns . size ())

Abstract code
// test prefix:
METHOD_0 () { METHOD_1 () ; doReturn (false) . when (plugin)
. METHOD_2 () ; doReturn (false) . when (plugin) . METHOD_3 (
) ; final Set < IDENT_4 > IDENT_5 = plugin . METHOD_4 () ;
"<AssertPlaceHolder>" ; }
// focal‐method:
size () { return IDENT_6 . size () ; }
// Assertion:
Assert . assertEquals (1 , IDENT_5. size ())

Focal-test

TAP

Focal-test

TAP

Fig. 2. Abstraction process.

needs to be created manually or via EvoSuite tool [6]. Un-
like TOGA, this paper focuses on the problem of assertion
generation using only focal-test.

B. Combining Information Retrieval and Deep Learning for
Assertion Generation

The community has been working to boost DL techniques in
software engineering tasks by leveraging Information Retrieval
(IR) techniques and achieved promising results. Drawing on
the idea of “combining IR and DL”, Yu et al. [9] proposed a
novel integration approach to tackle the assertion generation
problem. Their contributions include two IR-based approaches
for assertion generation, namely IR-based assertion retrieval
(IRar) and retrieved-assertion adaptation (RAadapt).

The basic idea of IRar is to retrieve the assertion whose
corresponding focal-test has the highest similarity (e.g., Jac-
card [10] similarity) with the given focal-test, and the re-
trieved assertion is returned as an expected assertion. As
IRar does not always retrieve completely accurate assertions,
RAadapt has been proposed to automatically adapt retrieved
assertions to the right forms utilizing contextual information.
For a retrieved assertion, RAadapt performs the following
adaptation process: 1) deciding whether the assertion should
be modified; 2) deciding which token (i.e., invoked method,
variable, or constant) should be modified; 3) deciding what
value a candidate token should be replaced with. Yu et al.
have proposed two replacement strategies for determining the
replacement value: one based on heuristics (RAH

adapt) and
the other on neural networks (RANN

adapt). RAH
adapt utilizes

lexical similarity for code replacement. In contrast to RAH
adapt,

RANN
adapt further enhances lexical similarity by incorporating

semantic information using a neural network architecture and
computes replacement values for code adaptation. Finally, Yu
et al. [9] combine IR and DL techniques and propose an
integrated approach, referred to as Integration in this paper.
Integration first retrieves assertions using Jaccard similarity
and adjusts the retrieved assertion if necessary. Then, Integra-
tion uses a semantic compatibility inference model to compute
the “compatibility” of the adjusted assertion and the current

1125

// focal‐test:
testSetObject () { java . util . Date newDate = org . dayatang . utils . DateUtils .
parseDate ("2008‐05‐11") ; instance . setObject ("theDay" , newDate) ;
"<AssertPlaceHolder>" ; }
getObject (java . lang . String , java . lang . Class) { return getObject (key ,
objectClass , null) ; }
// Assertion:
org . junit . Assert . assertEquals (newDate , instance . getObject ("theDay" , java .
util . Date . class))

Dataold data item

// focal‐test:
void childMergeOfRootPriorityWorks () { CompoundWrite compoundWrite = CompoundWrite .
emptyWrite () . addWrite (new Path (".priority") , PRIO_NODE) ;
"<AssertPlaceHolder>" ; }
void emptyWrite () { return Empty (); }
// Assertion:
Assert . assertEquals (PRIO_NODE , compoundWrite . childCompoundWrite (new Path (
".priority")) . apply (EmptyNode . Empty ()))

Assertion with unknown token

Fig. 3. Assertion with known vs. unknown tokens.

focal-test. If the compatibility is below a specified threshold
(denoted as t), Integration switches to ATLAS to generate an
assertion from scratch. The value of t is determined based on
the validation set. Given that RANN

adapt outperforms other IR-
based approaches, including IRar and RAH

adapt, we adopt the
combination of RANN

adapt and ATLAS to explore the optimal
performance of Integration.

III. THE EMPIRICAL EXPLORATION OF Integration

The empirical study aims to investigate the application sce-
narios of Integration [9] and gain insight into its mechanisms
i.e., where and why Integration works and does not work. To
this end, three research questions are designed.

• RQ1: What are the characteristics of the dataset? We first
perform an in-depth analysis of the dataset. In particular,
we analyze the distribution of assertion lengths on the
entire dataset. Next, for each Test-Assertion Pair TAPi in
the test set, we retrieve the assertion from the training set
whose corresponding focal-test has the highest similarity
to the focus-test of TAPi and compute the edit distance
between the assertion of TAPi and the retrieved asser-
tion. Such investigation not only validates the dataset’s
characteristics but also helps us comprehend the intrinsic
association between TAPs and their similar instances,
which can guide our method design (see Section IV).

• RQ2: Where and why does Integration work? We further
explore the advantages of Integration for assertion gener-
ation. We first classify the results generated by Integration
according to the assertion generation method used. Next,
we analyze the assertions that are generated correctly.

• RQ3: Where and why does Integration fail? We inves-
tigate the weaknesses of Integration, which are critical
in that understanding the application scenario of an
approach can better help us apply it in practice [33].

A. Dataset

We use the two publicly available datasets [34] from Yu et
al. for our experiments, namely Dataold and Datanew, respec-
tively. To make our paper self-contained, we briefly describe
the Dataold and Datanew in the following paragraphs.

1) Dataold: Dataold is derived from the original dataset
used by ATLAS. Initially, Dataold is extracted from a pool
of 2.5 million test methods in GitHub, which include test
prefixes and their corresponding assertion statements. For each
test method, Dataold includes the focal method, i.e., the
production code under test. The Dataold is then preprocessed
to exclude test methods with token lengths exceeding 1K and
filter out assertions containing unknown tokens that are not
present in the focal-test and the vocabulary, following estab-
lished practice in natural language processing [35], [36]. As an
example, the bottom part of Figure 3 highlights the unknown
tokens childCompoundWrite, apply, and EmptyNode.
After removing duplicates, Dataold obtains 156,760 data
items, which are further divided into training, validation, and
test sets at an 8:1:1 ratio.

2) Datanew: The exclusion of assertions with unknown
tokens can oversimplify the assertion generation problem,
making Dataold unsuitable for representing the realistic data
distribution. This, in turn, poses a significant threat to the
validity of experimental conclusions. Therefore, Yu et al. [9]
constructed an expanded dataset, denoted as Datanew, by
adding those cases that are excluded with unknown tokens in
Dataold. Besides the existing data items in Dataold, Datanew
contains an extra 108,660 samples with unknown tokens to
form a total of 265,420 data items, which are also divided
into training, validation, and test sets in an 8:1:1 ratio.

B. Study Results

1) RQ1: What are the characteristics of the dataset:
Figure 4 shows the distribution of assertion length, where
the X axis represents various assertion lengths and the Y
axis represents the number of corresponding assertions. Both
datasets reveal a similar distribution trend: Assertions are
typically less than 30 tokens, and the number of assertions
decreases as the length of the assertions increases. The average

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

Nu
mb

er o
f as

ser
tio

ns

L e n g t h o f a s s e r t i o n s

 D a t a n e w
 D a t a o l d

Fig. 4. Length distribution of assertions of each dataset.

1126

length of assertions in Datanew is 13 tokens, while in Dataold
that is 12 tokens. This finding suggests that in practice, testers
may prefer brief assertions as long ones can cause maintenance
difficulties.

Finding-1 of RQ1
Both Datanew and Dataold exhibit a long-tail distribu-
tion in assertion length and edit distance. The majority
of assertion lengths are concentrated within a small
number of tokens.

TABLE I
EDIT DISTANCE (E) BETWEEN RETRIEVED ASSERTIONS AND GROUND

TRUTH FOR EACH TEST SET

Dataset E = 0 E = 1 E = 2 E = 3 3 < E ≤ 5 5 < E ≤ 10 10 < E Total
Dataold 5,684 2,377 934 598 1,020 2,082 2,981 15,676
Datanew 10,059 3,059 1,581 1,031 1,563 3,050 6,199 26,542

Table I further provides edit distances between test sam-
ples’ ground truth (i.e., expected assertions) with retrieved
assertions. Interestingly, we can observe that a significant pro-
portion of assertions match exactly with retrieved assertions,
accounting for 37.90% = 10, 059/26, 542 and 36.26% =
5, 684/15, 676 in Datanew and Dataold, respectively. In
addition, for Datanew and Dataold, 65.15% and 67.70% of
the test samples only need to modify the retrieved assertion by
less than or equal to five tokens to produce a correct assertion.
Such findings provide evidence of the effectiveness of the
information retrieval (IR) approach: by identifying similarities
from the focal-tests, we can find almost or completely matched
assertions.

Finding-2 of RQ1
The Information Retrieval (IR) technique can success-
fully search nearly or completely correct assertions by
identifying the similarity of focal-tests.

2) RQ2: Where and why does Integration work: To gain
insight into where and why Integration works, we analyze
its prediction results. Given that Integration is an integrated
method that integrates ATLAS and an IR-based assertion
generation method (RANN

adapt in this paper), we categorize
Integration’s generated results based on the assertion gener-
ation method used. Our analysis reveals that RANN

adapt gen-
erates 21,250 (80.06% = 21, 250/26, 542) assertions for
Datanew and 10,215 (65.16% = 10, 215/15, 676) assertions
for Dataold. The results indicate that Integration prefers
assertions generated by the IR-based approach.

Finding-1 of RQ2
The effectiveness of Integration is primarily dependent
on the IR-based assertion generation method.

As the IR-based approach contributes most to the Integra-
tion, we conduct further analysis on the correct assertions gen-
erated by RANN

adapt. Table II shows the edit distance between
retrieved assertions and correct ones generated by RANN

adapt for

TABLE II
EDIT DISTANCE (E) BETWEEN RETRIEVED ASSERTIONS AND ASSERTIONS

GENERATED BY RANN
adapt

Dataset Prediction E = 0 E = 1 E = 2 E = 3 E = 4 E = 5 E > 5 Total

Dataold
Correct 5,435 486 341 108 73 35 40 6,518

Incorrect 52 1,453 342 255 224 226 1,145 3,697

Datanew
Correct 9,839 437 235 67 32 8 22 10,640

Incorrect 130 2,436 1,162 798 709 543 4,832 10,610

Datanew and Dataold, accordingly. From the table, it can be
seen that the success of RANN

adapt is mainly based on retrieving
assertions that are identical to the ground truth, such as the
samples with E = 0 account for 92.47% = 9, 839/10, 640
in Datanew. RANN

adapt enhances the assertion generation of
Integration through adaptation operations, but is more effective
for single or two token modifications than for other modifica-
tion cases. For example, with the Datanew dataset, RANN

adapt

achieves an accuracy of 15.21% = 437/(437 + 2, 436) when
only one token is altered and 7.75% = 67/(67 + 798) when
three tokens are modified.

Finding-2 of RQ2
The majority of the successful assertions produced by
RANN

adapt are exactly the same as the retrieved ones.
In terms of adaptation operations, RANN

adapt performs
better on single token modifications than other modifi-
cation cases.

3) RQ3: Where and why does Integration fail: Previous
work [9] has demonstrated that one of the bottlenecks of
ATLAS’s performance arises from generating assertions with
long sequences. Hence, in RQ3, we focus on exploring where
and why RANN

adapt fails. We first collect the incorrect assertions
generated by RANN

adapt, and calculate the edit distance between
retrieved assertions and their ground truth. As shown in
Table II, for Datanew, there are 130 test samples whose
assertions match the ground truth but are still modified by
RANN

adapt, and a similar phenomenon occurs in Dataold.
The performance of RANN

adapt’s adaptation strategy is limited.
For instance, when E = 1, RANN

adapt incorrectly generates
84.79% = 2, 436/(437 + 2, 436) of assertions for Datanew
and 74.94% = 1, 453/(1, 453 + 486) for Dataold. The per-
formance of RANN

adapt is worse when E > 5, with an average
accuracy of only 1.91%.

Finding-1 of RQ3
Integration frequently incorrectly modifies assertions
even when the retrieved assertion matches the ground
truth exactly. When modifying one token to get the
correct assertion, the average accuracy is only 20.14%.

We further count the number of edits made by RANN
adapt for

those incorrect assertions. As reported in Table III, we can
observe that there is a significant proportion of samples for
which RANN

adapt does not make any changes to their retrieval
assertions, e.g. in Datanew, such type of sample size is

1127

TABLE III
NUMBER OF EDITS (N) MADE BY RANN

adapt FOR INCORRECT ASSERTIONS

Dataset N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 Total
Dataold 3,071 244 173 90 51 26 42 3,697
Datanew 9,436 497 328 167 73 35 74 10,610

9,436, representing 88.93% of the total number of incorrect
assertions. Our analysis is that this may be due to the difficulty
of RANN

adapt in understanding the semantic differences between
focal-tests (an example is shown in Figure 7). Yu et al. [9]
argue that an assertion needs to be edited if it contains at
least one token absent from the input focal-test. However, this
setting ignores many instances where the necessary changes
are made to adapt the context of the input focal-test, even if
all the tokens of the retrieved assertions occur in the input
focal-test.

Finding-2 of RQ3
Integration fails to comprehend the semantic differ-
ences between focal-tests, resulting in many cases
where retrieved assertions require modifications but are
not edited appropriately.

IV. RETRIEVE-AND-EDIT ASSERTION GENERATION

Drawing on insights garnered from our empirical study,
we propose EDITAS, a retrieve-and-edit approach for gen-
erating assertions. Unlike Integration, which only considers
replacement operations to adjust retrieved assertions, EDITAS
can learn diverse assertion edit patterns from similar TAPs.
Given a focal-test as input, EDITAS retrieves a corpus to
obtain the similar TAP based on the similarity of focal-test and
generates a new assertion via the retrieved TAP’s assertion and
compatible edit patterns. The overall framework of EDITAS
is illustrated in Figure 5. EDITAS consists of a Retrieval
component and an Edit component.

A. Retrieval component

In our approach, the Retrieve component retrieves a similar
Test-Assert Pair (TAP) from a corpus given the input focal-
test. Specifically, to facilitate efficient retrieval, EDITAS first
tokenizes each focal-test in the training and test sets using
javalang [37] and removes duplicate tokens. Then, the Re-
trieve component retrieves the TAP whose focal-test has the
highest Jaccard similarity coefficient with the input focal-test.
The Jaccard similarity is a text similarity measurement that
considers the overlap of words between two texts, calculated
using the following formula:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

Where A and B are two bags of words, |·| denotes the number
of elements in a collection.

B. Edit component

We employ a neural edit model to learn diverse assertion
edit patterns from similar TAPs. The edit model is designed
to understand how to modify one assertion to another based
on semantic differences between focal-tests. Specifically, for a
given focal-test ft and its similar focal-test instance ft′, along
with their corresponding assertions x and y, the neural edit
model aims to find a function f such that f (ft, ft′, x) = y. In
this section, we elaborate on the focal-test semantic difference
representation and the neural edit model training.

1) Focal-test semantic difference representation: We ex-
tract and compare semantic information and modification
details between focal-tests using edit sequences, according
to the previous work’s finding [38]: different words between
the two methods can reflect their semantic differences. We
follow a similar approach as in [39], [40], aligning the two
tokenized focal-test sequences using a diff tool and creating
an edit sequence based on the resulting alignment. As shown in
Figure 6, each element (named as an edit) in an edit sequence
is represented as a triple ⟨fti, fti′, ai⟩, where fti is a token in
one focal-test and fti

′ is a token in the similar focal-test, and
ai is the edit action that transforms fti to fti

′. There are four
types of edit actions: insert, delete, equal, or replace. when ai
is an insert (delete) operation, it means that fti (fti′) will be
an empty token ∅. Constructing such an edit sequence can not
only preserve the information of the focal-test (i.e., fti and
fti

′) but also highlight their fine-grained differences through
ai.

2) Neural edit model training: Our neural edit model is
fundamentally a sequence-to-sequence neural architecture. It
accepts a retrieved assertion x =

[
x1, x2, · · · , x|x|

]
and an

edit sequence E =
[〈

ft1, ft
′

1, a1

〉
, . . .

〈
ftn, ft

′

n, an

〉]
as

input and is designed to generate a new assertion y =[
y1, y2, · · · , y|y|

]
. Specifically, EDITAS incorporates two en-

coders: the Edit Sequence Encoder and the Assertion Encoder,
to respectively encode the edit sequence and the retrieved as-
sertion. An attention mechanism is then applied on the encoder
side to learn the relationship between the edit sequence and
the retrieved assertion. The decoder consists of two pointer
generators that enable the model to copy tokens from both
the input focal-test and the retrieved assertion concurrently
during the generation process. This approach can effectively
preserve the original meaning of the retrieved assertion while
integrating the assertion edit patterns reflected in the edit
sequence.

❶ Encoders. The structures of the two encoders, i.e., the
Edit Sequence Encoder and the Assertion Encoder, are nearly
identical. They consist of a contextual embedding layer, an
attention layer, and a modeling layer.

The Contextual Embed Layer. We first map the focal-test
tokens, assertion tokens, and edit action tokens to embeddings.
Considering there are only four edit actions, we randomly ini-
tialize an embedding matrix and update it during training. To
capture both syntactic and semantic information, we employ
a pre-trained model, such as fastText [41], to acquire word

1128

Offline—Retrieval Component

Input Focal-Test

Test Prefix

Focal method

// Input test prefix:
graph_union_1q () { List < Binding > results = exec ((
("(graph<sp><" + (Quad . unionGraph . getURI ())) +
"><sp>(bgp<sp>(<s2><sp>?p<sp>?o)))") , QUADS) ;
"<AssertPlaceHolder>" ; }
// Input focal method:
size () { return rows . size () ; }

Training Set

Assertion

Test Prefix

Focal method

Assertion

Test Prefix

Focal method

Similar Test-Assert Pair

// Similar Assertion:
Assert . assertEquals (2 , results . size ())

// Similar test prefix:
graph_union_2q () { List < Binding > results = exec ((
("(graph<sp><" + (Quad . unionGraph . getURI ())) +
"><sp>(bgp<sp>(<s1><sp>?p<sp>?o)<sp>(?o<sp>?q<sp>?z)<sp>
))") , QUADS) ; "<AssertPlaceHolder>" ; }
// Similar focal method:
size () { return rows . size () ; }

Offline—Editing Component

Code Change
Sub-Encoder
Similar Assert
Sub-Encoder

Attention

LSTM-based
Decoder

Dense+Softmax

Weighted Sum

Encoder

Decoder

Edit Sequence

Online—Generation
Test Prefix

Focal method

Input Test Prefix

Assertion

Test Prefix

Focal method

Trained
Edit Model

Test-Assert Retrieval Base

Similar Test-Assert Pair

// new Assertion:
Assert . assertEquals (4 ,
results . size ())

Data
Pre-processing sim

Query Tokens

Train1

Train2

Train3

Trainn

...

Fig. 5. The overall framework of our approach.

embeddings for each focal-test and assertion token. We then
use a bidirectional long short-term memory (Bi-LSTM) [42] to
process the sequence of word embeddings to access contextual
information. For Edit Sequence Encoder and each edit Ei, the
three embeddings, i.e., efti , eft′i

, eai are first concatenated
horizontally, and then input to the Bi-LSTM, as follows:

e
′

i = [efti ⊕ eft′i
⊕ eai

]
−→
h

′

i = LSTM(
−→
h

′

i−1, e
′

i);
←−
h

′

i = LSTM(
←−
h

′

i+1, e
′

i)

h
′

i = [
−→
h

′

i ⊕
←−
h

′

i]

where h
′

i is the contextual vector of this edit and ⊕ is a
concatenation operation. Similarly, Assertion Encoder obtains

String testCommentID = testCommentID

String testDisc = "testDisc"

Tokenize Align

String test Comment ID = Ø test Comment ID

String test Ø Disc = “ test Disc ”

equal equal delete replace equal insert equal replace replace

ift

'
ift

ia

Fig. 6. Converting a difference between focal-tests to an edit sequence.

the contextual vector hi of each assertion token xi with xi’s
embedding exi

as input.
The Attention Layer. This layer is responsible for linking

and fusing the information of the focal-test difference and
that of the retrieved assertion, capturing their relationship. We
place it on the top of the two contextual embed layers. The
attention layer takes as input the contextual vectors, i.e., H
and H ′, and outputs an assertion-aware (edit-aware) feature
vector for each edit (assertion token), as well as the original
contextual vector for this edit (assertion token). Formally, the
edit-aware feature vector gi of assertion token xi is calculated
using the dot-production attention mechanism [43] as follows:

gi = H
′
αi; αi = softmax(H

′⊤Wαhi) (2)

The attention weight αi measures the importance of each
edit is with respect to xi. The computation of the assertion-
aware feature vector g

′

i of edit Ei is almost same and can be
expressed as follows:

g
′

i = Hα
′

i; α
′

i = softmax(H⊤W⊤
α h

′

i)

The Modeling Layer. This layer uses two distinct Bi-
LSTM to generate the final feature representation based on
the contextual vector of each edit (assertion token) and the
assertion-aware (edit-aware) feature vector, respectively. For

1129

example, given an assertion token xi, its final representation
zi is computed as follows:

fi = [gi ⊕ hi]
−→z i = LSTM(−→z i−1, fi);

←−z i = LSTM(←−z i+1, fi)

zi = [−→z i ⊕←−z i]

❷ Decoder. EDITAS uses an LSTM-based decoder to
generate a new assertion from the outputs of two encoders,
Z and Z

′
. The final hidden states of both modeling layers are

concatenated and used as the initial state for the decoder’s
LSTM. During decoding step j, the decoder computes the
hidden state sj based on the j-th word embedding of ground
truth assertion eŷj

, the previous hidden state sj−1, and the
previous output vector oj−1, as follows:

sj = LSTM(sj−1, [eŷj ⊕ oj−1]) (3)

We compute a context vector at each time step as the
representation of the encoder’s input by the dot-product at-
tention mechanism, following Equation 2. Given there are two
encoders, the decoder obtains two context vectors, i.e., cj from
the retrieved assertion and c

′

j from the focal-test difference.
An output vector oj is computed using cj , c

′

j and sj , and
the corresponding vocabulary distribution P vocba

j is obtained
using a softmax layer.

oj = tanh(Vc[cj ⊕ c
′

j ⊕ sj]; P vocba
j = softmax(V

′

c oj)

where Vc and V
′

c are trainable parameters. P vocba
j records

the probability of each token being generated, of which the
element with the highest probability will be the output under
decoding step j. Due to the similarity of focal-tests, it is
reasonable to assume that certain tokens in the new assertion
should also appear in the retrieved assertion, while others that
are not present in the retrieved assertion should be included in
the input focal-test. Therefore, we adopt the pointer generator
to copy tokens from the retrieved assertion and the input focal-
test:

P ass
j (yj) =

∑
k:xk=yj

βjk; P ft
j (yj) =

∑
k:t

′
k=yj

β
′

jk

P ass
j (yj) and P ft

j (yj) are the probabilities of copying yj from
the retrieved assertion and the input focal-test, respectively.
βjk and β

′

jk are the attention weights of xk and Ek at time
step j, computed based on the context vectors cj and c

′

j .
The conditional probability of yj at time step j is then the

combination of P vocba
j , P ass

j , and P ft
j , i.e.,

p(yj |y<j , x, E) = γjP
vocba
j (yj) + (1− γj)(θjP

ass
j (yj)+

(1− θj)P
ft
j (yj))

γj and θj represent the probabilities of generating yj by
selecting from the vocabulary and copying from the retrieved
assertion, respectively. Both probabilities are modeled by a

single-layer feed-forward neural network, which is trained
jointly with the decoder.

C. Generation

Given an input focal-test ft, EDITAS generates an assertion
through three steps:

Step 1: Selecting a similar TAP. EDITAS leverages a
large-scale training dataset as the retrieval corpus. Then, the
Retrieval component retrieves the TAP whose focal-test closely
matches ft from the corpus. Further information on the
retrieval process is outlined in Section IV-A.

Step 2: Capturing fine-grained semantic differences be-
tween focal-tests. Through Step 1, EDITAS obtains a similar
focal-test to ft and its corresponding assertion statements.
EDITAS calculates the edit sequences to capture semantic
differences between ft and the retrieved focal-test. The details
of this part are described in Section IV-B.

Step 3: Combining retrieved assertion with semantic
differences between focal-tests. Finally, the trained neural
edit model adjusts the retrieved assertion based on the edit
sequences, thereby generating one assertion corresponding to
ft. Further details on this model can be found in Section IV-B.

V. EXPERIMENTAL SETUP

In this section, we describe the dataset and evaluation
metrics used in the experiment. We conduct experiments to
answer the following research questions:

• RQ4: How does the proposed EDITAS perform compared
to state-of-the-art assertion generation baselines?

• RQ5: Do different similarity coefficients affect the per-
formance of EDITAS?

A. Baselines

To answer the above-mentioned research questions, we
compare EDITAS to five baselines. We first chose ATLAS,
the first and classic neural network-based method for assertion
generation. ATLAS utilizes a sequence-to-sequence model to
generate assertions from scratch. Given that EDITAS aims
to revisit and improve retrieval-augmented deep assertion
generation methods, we further adopt the three state-of-the-
art (SOTA) retrieval-based methods, including IRar, RAH

adapt,
and RANN

adapt. Finally, we provide the performance comparison
between EDITAS and integration which is a SOTA retrieval-
augmented deep assertion generation method. For more details
please refer to Section II.

B. Datasets

We utilize Dataold and Datanew to evaluate the effective-
ness of EDITAS and baseline methods following Yu et al [9].
Compared to Dataold, Datanew adds the excluded cases with
unknown tokens back to Dataold. For more details, please
refer to Section III-A. Table IV provides detailed statistics of
the test sets for the two datasets, including their distribution
across different assertion types.

1130

TABLE IV
DETAILED STATISTICS OF EACH TYPE IN Datanew AND Dataold

AssertType Total Equals True That NotNull False Null ArrayEquals Same Other
Dataold 15,676 7,866 (50%) 2,783 (18%) 1,441 (9%) 1,162 (7%) 1,006 (6%) 798 (5%) 307 (2%) 311 (2%) 2 (0%)
Datanew 26,542 12,557 (47%) 3,652 (14%) 3,532 (13%) 1,284 (5%) 1,071 (4%) 735 (3%) 362 (1%) 319 (1%) 3,030 (11%)

TABLE V
COMPARISONS OF OUR APPROACH WITH EACH BASELINE

Approach Dataold Datanew

Accuracy BLEU Accuracy BLEU
ATLAS 31.42 (↑ 70.15%) 68.51 (↑ 17.90%) 21.66 (↑ 104.80%) 37.91 (↑ 67.40%)
IRar 36.26 (↑ 47.43%) 71.48 (↑ 13.00%) 37.90 (↑ 17.04%) 57.98 (↑ 9.45%)

RAH
adapt 40.97 (↑ 30.49%) 73.28 (↑ 10.22%) 39.65 (↑ 11.88%) 59.81 (↑ 6.10%)

RANN
adapt 43.63 (↑ 22.53%) 73.95 (↑ 9.22%) 40.53 (↑ 9.45%) 59.81 (↑ 6.10%)

Integration 46.54 (↑ 14.87%) 78.86 (↑ 2.42%) 42.20 (↑ 5.12%) 60.92 (↑ 4.17%)
EDITAS 53.46 80.77 44.36 63.46

↑ denotes performance improvement of EDITAS against state-of-the-art baselines

TABLE VI
DETAILED STATISTICS OF OUR APPROACH AND EACH BASELINE FOR EACH ASSERT TYPE

Dataset Approach Total AssertType
Equals True That NotNull False Null ArrayEquals Same Other

Dataold

ATLAS 4,925 (31%) 2,501 (32%) 966 (35%) 248 (17%) 598 (51%) 229 (23%) 236 (30%) 100 (33%) 47 (15%) 0 (0%)
IRar 5,684 (36%) 2,957 (38%) 1,039 (37%) 449 (31%) 439 (38%) 314 (31%) 285 (36%) 111 (36%) 89 (29%) 1 (50%)

RAH
adapt 6,423 (41%) 3,300 (42%) 1,151 (41%) 536 (37%) 553 (48%) 335 (33%) 316 (40%) 120 (39%) 111 (36%) 1 (50%)

RANN
adapt 6,839 (44%) 3,509 (45%) 1,225 (44%) 551 (38%) 610 (52%) 342 (34%) 341 (43%) 134 (44%) 126 (41%) 1 (50%)

Integration 7,295 (47%) 3,714 (47%) 1,333 (48%) 546 (38%) 724 (62%) 348 (35%) 352 (44%) 148 (48%) 129 (41%) 1 (50%)
EDITAS 8,380 (53%) 4,131 (53%) 1,581 (57%) 526 (36%) 807 (69%) 577 (57%) 469 (59%) 167 (54%) 122 (39%) 0 (0%)

Datanew

ATLAS 5,749 (22%) 2,900 (23%) 619 (17%) 537 (15%) 388 (30%) 126 (12%) 85 (12%) 47 (13%) 37 (12%) 1,010 (33%)
IRar 10,059 (38%) 4,664 (37%) 1,436 (39%) 1,070 (30%) 600 (47%) 394 (37%) 286 (39%) 147 (41%) 113 (35%) 1,349 (45%)

RAH
adapt 10,525 (40%) 4,882 (39%) 1,487 (41%) 1,142 (32%) 651 (51%) 403 (38%) 297 (40%) 154 (43%) 121 (38%) 1,388 (46%)

RANN
adapt 10,758 (41%) 4,988 (40%) 1,526 (42%) 1,161 (33%) 691 (54%) 401 (37%) 308 (42%) 162 (45%) 126 (39%) 1,395 (46%)

Integration 11,201 (42%) 5,248 (42%) 1,566 (43%) 1,196 (34%) 711 (55%) 401 (37%) 313 (43%) 162 (45%) 128 (40%) 1,476 (49%)
EDITAS 11,773 (44%) 5,339 (42%) 1,702 (47%) 1,304 (37%) 800 (62%) 523 (49%) 376 (51%) 172 (47%) 139 (44%) 1,418 (47%)

C. Metrics

Consistent with prior work [8], [9], the following metrics
are utilized in our experiment.

1) Accuracy: We use accuracy to evaluate the effectiveness
of assertion generation techniques. Specifically, a generated
assertion is considered accurate if and only if it exactly
matches the ground truth. Accuracy determines the percentage
of samples in which the generated output matches the expected
output in terms of syntax.

2) BLEU: In line with previous studies [8], [9], we use the
muti-BLEU to measure the similarity between the generated
assertion and the ground truth. BLEU calculates the modified
n-gram precision of a candidate sequence (i.e., the generated
assertion) to the reference sequence (i.e., the ground truth),
where n ranges from 1 to 4. The modified n-gram precision
values are then averaged, and a penalty is applied for overly
short sentences.

D. Implementation Details

In EDITAS, the hyper-parameter settings are determined
based on the performance on our validation set. For the
focal-test tokens, assertion tokens, and edit actions, we use
300-dimensional word embeddings. These embeddings are

obtained from a fastText model pre-trained on Common Crawl
and Wikipedia [44]. During training, the word embeddings are
frozen. The hidden states of the Bi-LSTMs and the LSTM in
our model have dimensions of 256 and 512, respectively. The
Edit Sequence Encoder, Assertion Encoder, and Decoder are
jointly trained to minimize the cross-entropy loss. We use the
Adam optimizer [45] with a learning rate of 0.001 and clip
the gradients norm by 5. The training is done with a batch
size of 8 and a dropout [46] rate of 0.2 for all LSTM layers.
We truncate the overlong input, where the length of the edit
sequence and the focal-test is set to 512. We stop training
after 5 trials, and the model with the best (smallest) validation
perplexity is selected for evaluation. All of our approaches are
built based on PyTorch framework [47]. We conduct all the
experiments on a Ubuntu 20.04 with four NVIDIA GeForce
RTX 3090 GPUs, one 32-core processor, and 256GB memory.

VI. EXPERIMENTAL RESULTS

A. RQ4: EDITAS vs. Baselines

Overall effectiveness of EDITAS. We calculate the ac-
curacy and BLEU scores between the assertions generated
by different approaches and human-written assertions. The
experimental results are presented in Table V. We notice that

1131

ATLAS performs the worst among all approaches. This is
mainly attributed to two reasons: 1) ATLAS, as a typical
sequence-to-sequence DL model, suffers from exposure bias
and gradient disappearance, leading to poor effectiveness in
generating a long sequence of tokens as an assertion. As
demonstrated in the previous work [9], ATLAS generates
less than 15 tokens with an accuracy of 46.3%, and only
17.9% accuracy of generating tokens with more than 15
tokens. 2) ATLAS has a weaker ability to generate statements
that contain unknown tokens, which significantly degrades
its overall performance. IRar retrieves assertions from the
corpus and uses them as output results, achieving better perfor-
mance than ATLAS. This indicates that the similar focal-test’s
assertion contains some valuable and reusable information,
which also demonstrates that it is reasonable for us to use the
assertion of a similar focal-test as the prototype. RAH

adapt and
RANN

adapt further adjust the retrieved assertions to enhance the
capability of the IR-based approach in generating assertions.
However, as shown in Table V, the performance of adaptation
operations of both RAH

adapt and RANN
adapt is limited, especially

for complex datasets. For instance, RANN
adapt can improve

20.33% of accuracy compared to IRar, while for Datanew,
the improvement is only 6.94%. A similar observation holds
for RAH

adapt. Integration combines IR and DL techniques and
achieves better accuracy and BLEU scores than ATLAS and
IR-based assertion generation methods.

From Table V, EDITAS achieves a significant performance
improvement over ATLAS, with an average accuracy improve-
ment of 87.48% and a BLEU score improvement of 42.65%
on both datasets. This is attributed to EDITAS using the
rich semantic information from the retrieved assertions, rather
than generating assertions from scratch. Our approach EDI-
TAS outperforms IR-based baseline methods and Integration
across all evaluation metrics. Specifically, compared to IRar,
RAH

adapt, RANN
adapt, and Integration, EDITAS achieves an av-

erage accuracy improvement of 32.24%, 21.19%, 15.99%, and
10.00%, respectively, which demonstrates the effectiveness of
our edit module. As compared with IR-based baselines, EDI-
TAS adopts the retrieved assertions as prototypes, and makes
modifications by considering the semantic difference between
input and similar focal-tests. By combining the advantages of
neural networks and IR-based methods, EDITAS achieves the
best performance.

Effectiveness on different assertion types. We further
compare the effectiveness of EDITAS and baseline methods
for different types of assertions. Each column in Table VI
represents an assertion type, and each cell shows the number of
correctly generated assertions and their corresponding ratios in
brackets. The results present that EDITAS performs better than
the baseline methods for almost all assertion types, especially
for the standard JUnit assertion type. For the other assertion
type, EDITAS performs marginally worse than Integration.
This may be attributed to the fact that the training set has
a large of samples of the JUnit testing framework, leading
EDITAS to learn more of the syntactic features of JUnit.

Overall, the experimental results can indicate the generality
of EDITAS in generating different types of assertions.

Input Focal-Test
// test prefix:
testToURLs3a () { final File []
files = new File [0] ; final URL
[] urls = FileUtils . toURLs
(files) ; "<AssertPlaceHolder>" ; }

// focal‐method:
toURLs (File []) { final URL []
urls = new URL [files . length] ;
for (int i = 0 ; i < (urls .
length) ; i ++) { urls [i] =
files [i] . toURI () . toURL
() ; } return urls ; }

// test prefix:
testToFiles3 () { final URL [] urls
= null ; final File [] files =
FileUtils . toFiles (urls) ;
"<AssertPlaceHolder>" ; }
// focal‐method:
toFiles (URL []) { if ((urls ==
null) || ((urls . length) ==
0)) { r e t u r n F i l e U t i l s .
EMPTY_FILE_ARRAY ; } final File []
files = new File [urls . length] ;
for (int i = 0 ; i < (urls .
length) ; i ++) { final URL url =
urls [i] ; if (url != null) { if
((url . getProtocol () . equals
("file")) == false) { throw new
IllegalArgumentException (("URL
could not be converted to a File: " +
url)) ; } files [i] = FileUtils .
toFile (url) ; } } return files ; }

Retrieved Focal-Test

org . junit . Assert . assertEquals (0 , files . length)

 org . junit . Assert . assertEquals (0 , files . length)

 org . junit . Assert . assertEquals (0 , files . length)

Integration: org . junit . Assert . assertEquals (0 , files . length)

EDITAS: org.junit.Assert.assertEquals (0 , urls . Length)

：arIR
：H

adaptRA
：NN

adaptRA

org.junit.Assert.assertEquals (0 , urls . Length)Ground Truth:

org . junit . Assert . assertEquals (0 , files . length)Retrieved Assertion:

Fig. 7. An example of generated assertions by our approach and baselines.

To better understand why EDITAS outperforms RAH
adapt

and RANN
adapt, we manually inspect the assertion generation

results. Our analysis reveals that EDITAS has the following
advantages over the other methods: 1) EDITAS is capable
of learning and applying diverse assertion editing patterns,
whereas RAH

adapt and RANN
adapt cannot handle token addition

or deletion operations. 2) RAH
adapt and RANN

adapt only modify
the retrieved assertion when it contains at least one token not
present in the input focal-test. However, even if all tokens
in the retrieved assertion appear in the input focal-test, it
may still require modification due to the semantic differences
between the focal-tests. In contrast, EDITAS leverages a
probabilistic model to learn common patterns of assertion
edits from existing focal-tests’ semantic differences. Overall,
the edit patterns learned by EDITAS are more diverse and
can cover a wider range of samples. For example, Figure 7
presents a test sample. In this sample, the focal method of the
input focal-test is responsible for transforming the file array
into a URL array. On the other hand, the retrieved focal-test
performs the opposite operation. Therefore, the corresponding
test prefix constructs an empty URL array to verify that the
transformed files array should also be empty. Similarly, the
test prefix of the input focal-test constructs an empty files
array, and its corresponding assertion aims to verify that the
transformed URL array is empty. Methods including IRar,
RAH

adapt, RANN
adapt, and Integration encounter difficulty in

understanding the semantic difference between focal-tests, as
they fail to recognize the opposite operation being performed.
In addition, the tokens for the retrieved assertions all appear
in the input focal-test, which does not satisfy the condition
that such methods modify the assertions. Consequently, they
directly take the retrieved assertion as the expected result,
leading to potential inaccuracies, while EDITAS succeeds.

1132

Summary of RQ4
EDITAS significantly outperforms all baseline methods
in accuracy and BLEU, with average performance
improvement of 10.00%-87.48% and 3.30%-42.65% on
the two datasets, respectively.

B. RQ5: The effectiveness with different similarity coefficients

EDITAS utilizes Jaccard as its default similarity coeffi-
cient. In this RQ, we aim to examine whether the similarity
coefficients affect EDITAS’s effectiveness. Specifically, we
developed two additional versions of EDITAS, utilizing two
commonly used similarity coefficients, Dice [48] and Over-
lap [49], respectively. Given two sets X and Y , Dice and
Overlap calculate the similarity as follows.

DSC(X,Y) = |X ∩ Y |/(|X|+ |Y |)
Overlap(X,Y) = |X ∩ Y |/min(|X|, |Y |)

Table VII displays the accuracy of EDITAS on both datasets
using different similarity coefficients. Our results illustrate that
the similarity coefficient does have an impact on the effective-
ness of EDITAS. Specifically, Jaccard and DICE similarity
coefficients have little impact on the effectiveness of EDITAS.
Notably, we observe that Overlap yields the poorest accuracy
and BLEU scores compared to Jaccard and DICE. We attribute
this to Overlap only accounting for the degree of overlap
between the two focal-tests, ignoring their differences.

TABLE VII
PERFORMANCE OF DIFFERENT SIMILARITY COEFFICIENTS

Dataset Metrics Jaccard Overlap DICE

Dataold
Accuracy 53.46 46.13 53.46

BLEU 80.77 75.42 80.77

Datanew
Accuracy 44.36 38.22 44.24

BLEU 63.46 56.37 63.59

Summary of RQ5
The similarity coefficient does have an impact on
the effectiveness of EDITAS. Improving the Retrieval
component’s capability can lead to better assertion
generation performance of EDITAS.

VII. THREATS TO VALIDITY

There are three main threats to the validity of our approach.
Firstly, following previous works [8], [9], we only conducted
experiments on two Java datasets. Although Java may not be
representative of all programming languages, the datasets used
in our experiments are large enough and provide sufficient
safety to demonstrate the effectiveness of EDITAS. Further-
more, EDITAS employs exclusively language-agnostic fea-
tures, i.e., edit sequences, and can be applied to other program-
ming languages. Secondly, the Retrieve component retrieves a
similar focal-test based on lexical similarity. This may result in
the retrieved focal-test and input focal-test being similar only
at the lexical level while exhibiting different assertions. To
address this threat, we use a large-scale Java dataset (247M)

to increase the scale and diversity of the retrieval corpus. We
also propose an Edit component, which modifies the prototype
by considering the semantic differences between the input
focal-test and the retrieved focal-test, to alleviate this threat.
The final major threat comes from the lack of comparing
EDITAS with other existing assertion generation methods in
terms of generating compilable assertions. While compilability
can be used as another indicator of assertion quality, auto-
mated construction has been a challenging task that is highly
dependent on external/internal settings/resources [50], [51].
Hence, automatically compiling large-scale assertions remains
an obstacle. To ensure scalability, we do not use compilability
and bug detection as metrics.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we reaffirm the previous finding that In-
formation Retrieval (IR) can always find a “almost correct”
assertion that is very similar to the expected one, and empha-
size the shortcomings of previous approaches in modifying
retrieved assertions. To alleviate these problems, we propose a
novel retrieve-and-edit approach named EDITAS for assertion
generation. EDITAS contains two components. A Retrieve
component for retrieving the similar focal-test that consists
of a test method without any assertion and its focal method
(i.e., the method under test). An Edit component treats the
assertion of a similar focal-test as a prototype and combines
the prototype and assertion edit pattern reflected by semantic
differences between the input focal-test and similar focal-
test to generate a target assertion. We conducted extensive
experiments on two large-scale Java datasets. The experimental
results show that EDITAS substantially outperforms the state-
of-the-art baselines. Our work shows that for the assertion
generation task, retrieving similar assertions and learning
to modify retrieved assertions by applying a set of editing
operations can achieve satisfactory performance. In the future,
we plan to explore additional techniques to enhance EDITAS
further. One avenue we will explore is integrating contextual
information or leveraging code language models to handle
code changes more effectively. Additionally, we aim to extend
our approach to support other programming languages, such
as Python, to enhance the generalizability and applicability
of our method. Our source code and experimental data are
available at https://github.com/swf-cqu/EditAS.

IX. ACKNOWLEDGEMENTS

This work was supported in part by the National Key Re-
search and Development Project (No. 2021YFB1714200), the
Fundamental Research Funds for the CentralUniversities (No.
2022CDJDX-005), the Chongqing Technology Innovation
and Application Development Project (No. CSTB2022TIAD-
STX0007 and No. CSTB2022TIAD-KPX0067), the National
Natural Science Foundation of China (No. 62002034) and the
Natural Science Foundation of Chongqing (No. cstc2021jcyj-
msxmX0538).

1133

https://github.com/swf-cqu/EditAS

REFERENCES

[1] A. Hartman, “Is ISSTA research relevant to industry?” in Proceedings
of the International Symposium on Software Testing and Analysis,
ISSTA 2002, Roma, Italy, July 22-24, 2002. ACM, 2002, pp. 205–206.
[Online]. Available: https://doi.org/10.1145/566172.566207

[2] S. Planning, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, vol. 1,
2002.

[3] E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri, “TOGA:
A neural method for test oracle generation,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 2130–2141.
[Online]. Available: https://doi.org/10.1145/3510003.3510141

[4] E. Daka and G. Fraser, “A survey on unit testing practices and
problems,” in 25th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2014, Naples, Italy, November 3-6,
2014. IEEE Computer Society, 2014, pp. 201–211. [Online]. Available:
https://doi.org/10.1109/ISSRE.2014.11

[5] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for java,” in Companion to the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada. ACM, 2007, pp. 815–816. [Online]. Available:
https://doi.org/10.1145/1297846.1297902

[6] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in SIGSOFT/FSE’11 19th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13),
Szeged, Hungary, September 5-9, 2011. ACM, 2011, pp. 416–419.
[Online]. Available: https://doi.org/10.1145/2025113.2025179

[7] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real
faults in a financial application,” in 39th IEEE/ACM International
Conference on Software Engineering: Software Engineering in Practice
Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017.
IEEE Computer Society, 2017, pp. 263–272. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2017.27

[8] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On learning meaningful assert statements for unit test cases,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1398–1409. [Online].
Available: https://doi.org/10.1145/3377811.3380429

[9] H. Yu, Y. Lou, K. Sun, D. Ran, T. Xie, D. Hao, Y. Li, G. Li, and
Q. Wang, “Automated assertion generation via information retrieval
and its integration with deep learning,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
163–174. [Online]. Available: https://doi.org/10.1145/3510003.3510149

[10] T. Tanimoto, An Elementary Mathematical Theory of Classification
and Prediction. International Business Machines Corporation,
1958. [Online]. Available: https://books.google.com.hk/books?id=
yp34HAAACAAJ

[11] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, 2016, pp. 631–642.

[12] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 40th International Conference on Software Engineering, 2018, pp.
933–944.

[13] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for
end-to-end program repair,” IEEE Trans. Software Eng., vol. 47, no. 9,
pp. 1943–1959, 2021. [Online]. Available: https://doi.org/10.1109/TSE.
2019.2940179

[14] H. Hata, E. Shihab, and G. Neubig, “Learning to generate corrective
patches using neural machine translation,” CoRR, vol. abs/1812.07170,
2018. [Online]. Available: http://arxiv.org/abs/1812.07170

[15] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: learning to repair compilation errors,” in Proceedings of
the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019.
ACM, 2019, pp. 925–936. [Online]. Available: https://doi.org/10.1145/
3338906.3340455

[16] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White,
and D. Poshyvanyk, “An empirical investigation into learning bug-
fixing patches in the wild via neural machine translation,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. ACM, 2018, pp. 832–837. [Online]. Available:
https://doi.org/10.1145/3238147.3240732

[17] Q. Zhang, C. Fang, Y. Ma, W. Sun, and Z. Chen, “A survey of
learning-based automated program repair,” CoRR, vol. abs/2301.03270,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2301.03270

[18] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2021. New
York, NY, USA: Association for Computing Machinery, 2021, p.
664–676. [Online]. Available: https://doi.org/10.1145/3468264.3468580

[19] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018.
ACM, 2018, pp. 200–210. [Online]. Available: https://doi.org/10.1145/
3196321.3196334

[20] B. Li, M. Yan, X. Xia, X. Hu, G. Li, and D. Lo, “Deepcommenter:
a deep code comment generation tool with hybrid lexical and
syntactical information,” in ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13,
2020. ACM, 2020, pp. 1571–1575. [Online]. Available: https:
//doi.org/10.1145/3368089.3417926

[21] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing
source code with transferred API knowledge,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. ijcai.org, 2018, pp.
2269–2275. [Online]. Available: https://doi.org/10.24963/ijcai.2018/314

[22] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1385–1397.

[23] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code
clones with graph neural network and flow-augmented abstract syntax
tree,” in 27th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2020, London, ON, Canada,
February 18-21, 2020. IEEE, 2020, pp. 261–271. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054857

[24] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information
in source code,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017. ijcai.org, 2017, pp. 3034–3040.
[Online]. Available: https://doi.org/10.24963/ijcai.2017/423

[25] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detection
of semantic code clones via tree-based convolution,” in Proceedings
of the 27th International Conference on Program Comprehension,
ICPC 2019, Montreal, QC, Canada, May 25-31, 2019, Y. Guéhéneuc,
F. Khomh, and F. Sarro, Eds. IEEE / ACM, 2019, pp. 70–80. [Online].
Available: https://doi.org/10.1109/ICPC.2019.00021

[26] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu,
“A novel neural source code representation based on abstract
syntax tree,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019. IEEE / ACM, 2019, pp. 783–794. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00086

[27] G. Zhao and J. Huang, “Deepsim: deep learning code functional
similarity,” in Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,
FL, USA, November 04-09, 2018. ACM, 2018, pp. 141–151. [Online].
Available: https://doi.org/10.1145/3236024.3236068

[28] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Generating
accurate assert statements for unit test cases using pretrained
transformers,” in IEEE/ACM International Conference on Automation
of Software Test, AST@ICSE 2022, Pittsburgh, PA, USA, May
21-22, 2022. ACM/IEEE, 2022, pp. 54–64. [Online]. Available:
https://doi.org/10.1145/3524481.3527220

1134

https://doi.org/10.1145/566172.566207
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3510003.3510149
https://books.google.com.hk/books?id=yp34HAAACAAJ
https://books.google.com.hk/books?id=yp34HAAACAAJ
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.1109/TSE.2019.2940179
http://arxiv.org/abs/1812.07170
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3238147.3240732
https://doi.org/10.48550/arXiv.2301.03270
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3368089.3417926
https://doi.org/10.1145/3368089.3417926
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.1109/ICPC.2019.00021
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1145/3236024.3236068
https://doi.org/10.1145/3524481.3527220

[29] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage of
text-to-text transfer transformer to support code-related tasks,” in 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 336–347.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00041

[30] A. Mastropaolo, N. Cooper, D. Nader-Palacio, S. Scalabrino,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Using transfer learning
for code-related tasks,” IEEE Trans. Software Eng., vol. 49, no. 4,
pp. 1580–1598, 2023. [Online]. Available: https://doi.org/10.1109/TSE.
2022.3183297

[31] “ToGA Artifact.” https://github.com/microsoft/toga, 2022.
[32] “A issue bug of ToGA Artifact.” https://github.com/microsoft/toga/

issues/3, 2022.
[33] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-

machine-translation-based commit message generation: how far are
we?” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. ACM, 2018, pp. 373–384. [Online]. Available:
https://doi.org/10.1145/3238147.3238190

[34] “Integration Artifact.” https://github.com/yh1105/
Artifact-of-Assertion-ICSE22, 2022.

[35] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
LSTM language models,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
[Online]. Available: https://openreview.net/forum?id=SyyGPP0TZ

[36] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” CoRR, vol. abs/1409.2329, 2014. [Online]. Available:
http://arxiv.org/abs/1409.2329

[37] C. Thunes, “Javalang.” https://github.com/c2nes/javalang, 2019.
[38] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A retrieve-and-

edit framework for source code summarization,” in 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2021, Melbourne, Australia, November 15-19, 2021. IEEE, 2021, pp.
155–166. [Online]. Available: https://doi.org/10.1109/ASE51524.2021.
9678724

[39] Z. Liu, X. Xia, M. Yan, and S. Li, “Automating just-in-time
comment updating,” in 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 2020, pp. 585–597. [Online]. Available:
https://doi.org/10.1145/3324884.3416581

[40] Z. Liu, X. Xia, D. Lo, M. Yan, and S. Li, “Just-in-time
obsolete comment detection and update,” IEEE Trans. Software

Eng., vol. 49, no. 1, pp. 1–23, 2023. [Online]. Available: https:
//doi.org/10.1109/TSE.2021.3138909

[41] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov,
“Learning word vectors for 157 languages,” in Proceedings of
the Eleventh International Conference on Language Resources and
Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. European
Language Resources Association (ELRA), 2018. [Online]. Available:
http://www.lrec-conf.org/proceedings/lrec2018/summaries/627.html

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[43] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015.
The Association for Computational Linguistics, 2015, pp. 1412–1421.
[Online]. Available: https://doi.org/10.18653/v1/d15-1166

[44] “Word vectors for 157 languages.” https://fasttext.cc/docs/en/
crawl-vectors.html, 2023.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[46] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp.
1929–1958, 2014. [Online]. Available: https://dl.acm.org/doi/10.5555/
2627435.2670313

[47] https://pytorch.org/.
[48] L. R. Dice, “Measures of the amount of ecologic association between

species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
[49] W. contributors., “Overlap—Wikipedia.” https://en.wikipedia.org/w/

index.php?title=Overlap&oldid=1061948530, 2021.
[50] F. Hassan and X. Wang, “Hirebuild: an automatic approach to history-

driven repair of build scripts,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 1078–1089. [Online]. Available:
https://doi.org/10.1145/3180155.3180181

[51] Y. Lou, Z. Chen, Y. Cao, D. Hao, and L. Zhang, “Understanding build
issue resolution in practice: symptoms and fix patterns,” in ESEC/FSE
’20: 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, P. Devanbu, M. B. Cohen, and
T. Zimmermann, Eds. ACM, 2020, pp. 617–628. [Online]. Available:
https://doi.org/10.1145/3368089.3409760

1135

https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/TSE.2022.3183297
https://doi.org/10.1109/TSE.2022.3183297
https://github.com/microsoft/toga
https://github.com/microsoft/toga/issues/3
https://github.com/microsoft/toga/issues/3
https://doi.org/10.1145/3238147.3238190
https://github.com/yh1105/Artifact-of-Assertion-ICSE22
https://github.com/yh1105/Artifact-of-Assertion-ICSE22
https://openreview.net/forum?id=SyyGPP0TZ
http://arxiv.org/abs/1409.2329
https://github.com/c2nes/javalang
https://doi.org/10.1109/ASE51524.2021.9678724
https://doi.org/10.1109/ASE51524.2021.9678724
https://doi.org/10.1145/3324884.3416581
https://doi.org/10.1109/TSE.2021.3138909
https://doi.org/10.1109/TSE.2021.3138909
http://www.lrec-conf.org/proceedings/lrec2018/summaries/627.html
https://doi.org/10.18653/v1/d15-1166
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
http://arxiv.org/abs/1412.6980
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://pytorch.org/.
https://en.wikipedia.org/w/index.php?title=Overlap&oldid=1061948530
https://en.wikipedia.org/w/index.php?title=Overlap&oldid=1061948530
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3368089.3409760

