
Automating Just-In-Time Comment Updating

Zhongxin Liu∗†

Zhejiang University

China

liu_zx@zju.edu.cn

Xin Xia‡

Monash University

Australia

xin.xia@monash.edu

Meng Yan
Chongqing University

China

mengy@cqu.edu.cn

Shanping Li
Zhejiang University

China

shan@zju.edu.cn

ABSTRACT

Code comments are valuable for program comprehension and soft-

ware maintenance, and also require maintenance with code evolu-

tion. However, when changing code, developers sometimes neglect

updating the related comments, bringing in inconsistent or obsolete

comments (aka., bad comments). Such comments are detrimental

since they may mislead developers and lead to future bugs. There-

fore, it is necessary to fix and avoid bad comments. In this work,

we argue that bad comments can be reduced and even avoided by

automatically performing comment updates with code changes. We

refer to this task as “Just-In-Time (JIT) Comment Updating” and

propose an approach namedCUP (CommentUPdater) to automate

this task. CUP can be used to assist developers in updating com-

ments during code changes and can consequently help avoid the

introduction of bad comments. Specifically, CUP leverages a novel

neural sequence-to-sequence model to learn comment update pat-

terns from extant code-comment co-changes and can automatically

generate a new comment based on its corresponding old comment

and code change. Several customized enhancements, such as a spe-

cial tokenizer and a novel co-attention mechanism, are introduced

in CUP by us to handle the characteristics of this task. We build

a dataset with over 108K comment-code co-change samples and

evaluate CUP on it. The evaluation results show that CUP outper-

forms an information-retrieval-based and a rule-based baselines

by substantial margins, and can reduce developers’ edits required

for JIT comment updating. In addition, the comments generated

by our approach are identical to those updated by developers in

1612 (16.7%) test samples, 7 times more than the best-performing

baseline.

∗Also with Ningbo Research Institute.
†Also with PengCheng Laboratory.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416581

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

Maintaining software; Software evolution.

KEYWORDS

Comment updating, Code-comment co-evolution, Seq2seq model

ACM Reference Format:

Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2020. Automating Just-

In-Time Comment Updating. In 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual

Event, Australia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3324884.3416581

1 INTRODUCTION

Code comments are a vital source of software documentation. De-

velopers record various information, such as the intention, imple-

mentation and usage of a code segment, code relations, and code

evolutions [34, 36, 42] in comments, which makes code comments

valuable for understanding source code and facilitating the commu-

nication between developers [53, 55]. A prior study has shown that,

besides source code, comments are considered as the most essential

software artifacts for program comprehension and maintenance [7].

Despite the value of comments, developers may forget or ig-

nore the updates of comments when changing source code [43, 50],

which may bring in inconsistent or obsolete comments (aka., bad

comments) [43, 44, 50]. Table 1 presents a bad comment example in

Apache Kafka [1]. The method in Table 1 registers the metrics of the

producer, consumer, and admin clients, while only the consumer

clients are mentioned in its associated comment. Hence, the com-

ment is an inconsistent comment. Before being fixed by developers,

this comment had existed for over eight months. During this time,

it may mislead developers, waste their time to double-check the

implementation, complicate code reviews, and result in the intro-

duction of bugs [16, 35, 43, 44, 46]. Therefore, bad comments have

negative effects to the robustness of a system and may increase the

cost of its development and maintenance. It is necessary to fix bad

comments in time or avoid introducing them.

To figure out how and when bad comments are introduced, we

further checked the change history of the method in Table 1. We

found that at the beginning, only the consumer clients’ metrics

were registered in this method, but two following code changes

added the producer and admin clients’ metrics, respectively, without

713

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Table 1: A bad comment example

public Map <MetricName , ? extends Metric > metrics () {

...

for (final StreamThread thread : threads) {

result.putAll(thread.producerMetrics ());

result.putAll(thread.consumerMetrics ());

result.putAll(thread.adminClientMetrics ());

}

...}

Method Comment: Get read-only handle on global metrics registry, in-

cluding streams client’s own metrics plus its embedded consumer clients’

metrics.

Updated Comment: Get read-only handle on global metrics registry,

including streams client’s own metrics plus its embedded producer, con-

sumer and admin clients’ metrics.

updating the comment. This finding inspires us that if comments

can be automatically updated with each code change, it is possible

to reduce and even avoid the introduction of bad comments.

In this work, we refer to the task that performs comment up-

dates with code changes as "Just-In-Time (JIT) Comment Updating"

and propose a novel approach named CUP (Comment UPdater)

to automate this task. Intuitively, this task can be automated us-

ing manually derived patterns and rules. However, comments are

free-form texts written in natural languages and are far less formal

than source code. Thus, it is challenging and time-consuming to

manually summarize and adaptively apply comment update pat-

terns. CUP tackles this task in another way. It leverages a novel

neural sequence-to-sequence (seq2seq) model to learn the patterns

of comment updates occurring with code changes and automatically

generate new comments based on the corresponding old comments

and code changes. CUP can be used to assist developers in updating

comments during code changes, and can consequently help reduce

and avoid the introduction of bad comments.

Neural seq2seq models have been shown to be effective for

many software engineering (SE) tasks [14, 28, 48]. However, the

seq2seq models used in other tasks cannot be directly adopted to

JIT comment updating due to two main characteristics of this task:

First, we need to preserve the format of comments while dealing

with out-of-vocabulary (OOV) words. OOV words are pervasive

in software artifacts and need to be carefully handled in many SE

tasks [14, 28, 48]. Furthermore, because the goal of this task is to

update comments instead of generate them from scratch, it is also

necessary to keep the format of old and new comments consistent.

Second, this task takes both code changes and old comments as

input. Old comments serve as the basis of updates and code changes

can provide important guidance and clues. Thus, this task requires

neural seq2seq models to learn the representations of code changes

and old comments simultaneously and capture their relationships

effectively.

To cope with the first characteristic, we propose a simple but

effective way to tokenize code and comments, which can not only

reduce OOV words but also keep the format information of com-

ments. The copy mechanism [38] is also adopted to copy OOV

words and format information from the input during generation.

For the second characteristic, our seq2seq model first leverages two

distinct encoders to encode code changes and old comments, respec-

tively. Then, to better capture relationships between code changes

and comments, we build a unified vocabulary for both code and

comment tokens, adopt a pre-trained fastText model to obtain word

embeddings, and integrate a novel co-attention mechanism to our

seq2seq model. The unified vocabulary ensures the same tokens ap-

pearing in code and comments have identical representations. The

fastText embeddings provide accurate syntactic and semantic infor-

mation of each token. The co-attention mechanism can effectively

link and fuse information in code changes and comments.

To evaluate our approach, we extract code changes from 1,496

popular engineered Java projects hosted on GitHub, carefully con-

structing a dataset with 108K code-comment co-change samples.

An information-retrieval-based (IR-based) method, a rule-based

method and a special method which directly outputs old comments

are used as baselines. We evaluate CUP and the baselines on our

dataset in terms of Accuracy, Recall@5 and two metrics proposed

by us named Average Edit Distance (AED) and Relative Edit Dis-

tance (RED). The evaluation results show that CUP outperforms

all baselines in terms of all metrics. Specifically, CUP can replicate

comment updates performed by developers in 1612 (16.7%) cases,

which are 7 times more than the best-performing baseline. It is also

the only approach with RED less than 1, which indicates that it can

reduce developers’ efforts in JIT comment updating.

In summary, the contributions of this paper include:

(1) We propose a novel approach, namely CUP, to automate

JIT comment updating. CUP is based on a neural seq2seq

model and introduces several customized improvements to

effectively handle the characteristics of this task.

(2) We build a dataset with over 108K code-comment co-change

samples for JIT comment updating. To the best of our knowl-

edge, it is the first large dataset for this task.

(3) We extensively evaluate CUP on the dataset using four met-

rics. CUP is shown to outperform three baselines and can

reduce developers’ efforts in updating comments.

(4) We open source our replication package [4, 5], including the

dataset, the source code of CUP, our trained model and test

results, for follow-up works.

The remainder of this paper is organized as follows: Section 2

describes the JIT comment updating task and the usage scenarios

of our approach. We elaborate on our approach in Section 3 and

illustrate how we build our dataset in Section 4. Section 5 presents

the procedures and results of our evaluation. In Section 6, we discuss

the situations where our approach may fail, a quality assurance

method for our approach, the performance of our approach in

terms BLEU-4 and METEOR and the threats to validity. After a brief

review of related work in Section 7, we conclude this paper and

point out future work in Section 8.

2 PROBLEM AND USAGE SCENARIO

In this section, we formalize the JIT comment updating task and

describe the usage scenarios of our approach.

2.1 Problem Formulation

This work targets at automating JIT comment updating, i.e., au-

tomatically updating comments with code changes. This task can

714

Figure 1: The overall framework of our approach.

be formalized as follows: given the pre- and post-change versions

of a code snippet t , t ′ and the pre- and post-change versions of

its associated comment x , y (x � y), find a function f so that

f (t, t ′,x) = y. Hereon, we refer to t , t ′, x and y as old code, new

code, old comment, and new comment, respectively. We tackle this

task by devising and training a neural seq2seq model to approxi-

mate f . In addition, since the goal is to update comments instead

of generate them from scratch, keeping the format of old and new

comments consistent is regarded as an essential requirement.

2.2 Usage Scenario

Our approach, namely CUP, takes a code change and its associated

old comment as input, aiming to generate the corresponding new

comment. Its usage scenarios are as follows:

First of all, CUP can be used to assist developers in performing

JIT comment updating. When developers make a code change, CUP

can automatically provide update suggestions for the associated

comments. If the comments generated by CUP are correct, develop-

ers can quickly perform comment updates through one click. Even

if CUP’s suggestions are only partially correct, they can also reduce

developers’ edits required to update comments. Therefore, CUP can

help improve developers’ productivity with respect to JIT comment

updating and avoid the introduction of bad comments.

CUP is also able to fix existing bad comments with the help of

bad comment detection tools. For example, developers can first

leverage the tool proposed by Liu et al. [26] to identify comments

requiring updates in each historical code change. Then, CUP can be

used to automatically update the detected bad comments instead

of manually check and modify them.

3 APPROACH

The overall framework of our approach is illustrated in Figure 1. It

consists of three phases, i.e., data flattening, model training, and

comment updating. Specifically, we first flatten the code-comment

co-change samples extracted from source code repositories as se-

quences. Then, our neural seq2seq model is trained using the flat-

tened data. Finally, given a code change and its associated old

comment, the trained model can automatically generate a new com-

ment to replace the old one. In this section, we elaborate on the

data flattening phase and our neural seq2seq model.

3.1 Data Flattening

In this phase, we convert code changes and comments into se-

quences so that they can be processed by our neural seq2seq model.

ti

t
′

i

ai

m

m

equal

Files

Files

equal

∅

Info

insert

.

.

equal

remove

remove

equal

All

∅

delete

(

(

equal

files

id

replace

)

)

equal

mFilesInfo.remove(id);

mFiles.removeAll(files);

an edit

Figure 2: Converting a code change to an edit sequence.

3.1.1 Tokenization. For comments, we first tokenize them by spaces

and punctuation marks. Spaces are removed while punctuation

marks are reserved. Then, compound words, which refer to the

tokens constructed by concatenating multiple vocabulary words

according to camel or snake conventions, are split into multiple

tokens to reduce OOV words. After that, if two adjacent tokens are

not split by space, we insert a special token “<con>” between them

to mark they are concatenated.

As for code changes, each of them is composed of an old code

snippet and a new code snippet. The two snippets are first tokenized

using a lexer. Inner comments and white spaces are removed. Each

identifier is tokenized based on camel casing and snake casing, and

“<con>” is also inserted to join the subtokens. String literals are

tokenized like comments.

The key issue in software artifact tokenization is how to deal

with compound words. In the literature, the common ways in-

clude: not changing compound words [28], splitting them [14] and

adding a special symbol “</t>” at the end of each token before

splitting [19] (e.g., “inputBuffer” → “inputBuffer</t>” → “input

Buffer</t>”). However, the first way cannot reduce OOV words.

The second way may lose format information, i.e., a token sequence

may fail to be recovered to its original sentence. The third way can-

not handle the situation where a subtoken of a compound word is

generated as an independent token. For example, “input” cannot be

generated as an independent word if it is copied from “inputBuffer”,

since it does not end with “</t>”. Compared to these methods, our

tokenizer can be regarded as “asking” the neural model to also learn

format information by inserting “<con>” to mark concatenation.

Simple is it, it can effectively keep comment format consistent. Also,

to preserve format information, we do not lowercase tokens in both

code and comments.

3.1.2 Code Change Representation. After tokenization, each code

change is converted to two token sequences. We can simply use two

encoders to encode them, which however, makes it hard to capture

fine-grained modifications between them. To better represent each

code change, we first align its two token sequences using a diff tool

and then construct an edit sequence based on the alignment, similar

to [54], as its representation, as shown in Figure 2. Each element

in an edit sequence is a triple <ti , t
′
i ,ai> and is named as an edit.

ti is a token in the old code and t ′i is a token in the new code. ai
is the edit action that converts ti to t ′i , which can be insert, delete,

equal or replace. If ai is insert (delete), ti (t ′i) will be the empty token

∅. Such edit sequences can not only preserve the information of

the old code and the new code, but also highlight the fine-grained

changes between them.

715

LSTM

et′
1

et1 ea1

t1 t′
1

a1

h′

1

LSTM

et′
2

et2 ea2

t2 t′
2

a2

h′

2

LSTM

et′
3

et3 ea3

t3 t′
3

a3

h′

3

LSTM

ex1

x1

h1

LSTM

ex2

x2

h2

LSTM

ex3

x3

h3

Co-Attention

LSTM

h1
g1

LSTM

h2
g2

LSTM

h3
g3

LSTM LSTM LSTM

h′

1
g′

1 h′

2
g′

2 h′

3
g′

3

Code Change Attention

u′

1
u′

2
u′

3

Comment Attention

u1 u2 u3

Contextual

Embed Layer

Embedding

Layer

Co-Attention

Layer

Modeling

Layer
LSTM

eŷ1

<s>

LSTM

eŷ2

ŷ2

LSTM

eŷ3

ŷ3

· · ·
u′

3

u3

Dense + Softmax

s1 s2 s3

y1 y2
Weighted Sum

P vocab
3

y3

c′
3

c3

P code
3 P cmt

3

Code Change Encoder Comment Encoder Decoder

Figure 3: The architecture of our neural seq2seq model.

3.2 Overview of Our Neural Seq2Seq Model

The architecture of our neural seq2seq model is presented in Fig-

ure 3. Our model takes as input an edit sequence E = [<t1, t
′
1,a1>,

· · · , <|tn, t
′
n,an>] and an old comment x = [x1, · · · , x |x |], aiming

to generate the new comment y = [y1, · · · ,y |y |]. n is the length of

the edit sequence. In detail, it leverages two distinct encoders, i.e.,

Code Change Encoder and Comment Encoder, to encode the edit

sequence and the old comment, respectively, and generates the new

comment through an LSTM (long short-term memory) [13] decoder.

An encoder-side co-attention mechanism is leveraged to learn the

relationships between the code change and the old comment. Two

pointer generators [38] are used in the decoder to enable copy-

ing tokens from both the new code and the old comment during

generation.

3.3 Encoders

The two encoders, i.e., Code Change Encoder and Comment En-

coder, are nearly the same in structure. Each encoder is composed

of four ordered layers: an embedding layer, a contextual embed

layer, a co-attention layer, and a modeling layer.

3.3.1 The Embedding Layer. This layer is responsible for mapping

the three kinds of tokens, i.e., code tokens, comment tokens, and

edit actions, into embeddings. There are only four edit actions, so

we randomly initialize an embedding matrix for them and update it

during training. For code and comment tokens, we first build a uni-

fied vocabulary from all training code and comment tokens. Then

we use a pre-trained fastText model [11] to obtain the word embed-

ding of each token. Instead of two distinct vocabularies for code

and comments, we prefer a unified one because it ensures the same

tokens in code and comments have the same embeddings, which

can ease the capture of references between code and comments.

Pre-trained word embeddings are used for providing accurate syn-

tactic and semantic information. In addition, we choose fastText

instead of other pre-trained models because the word embeddings

learned by fastText contain subtoken information and it can effec-

tively map OOV words and subtokens into embeddings, which are

very suitable for this task.

3.3.2 The Contextual Embed Layer. For each encoder, we place

a distinct Bi-LSTM (Bidirectional LSTM) on the top of the em-

bedding layer to model the temporal interactions between edits

(comment tokens) and represent each edit (comment token) as a

contextual vector. For Code Change Encoder, the three embeddings,

i.e., eti ,et ′i
,eai , of each edit Ei are first concatenated horizontally,

and then input to the Bi-LSTM, as follows:

h′i = Bi-LSTM(h′i−1,h
′

i+1, [eti ;et ′i
;eai])

where h′
i
is the contextual vector of this edit. Comment Encoder

computes the contextual vector hi of each comment token xi in a

similar way with xi ’s embedding exi as input. For convenience, the

contextual vectors of the old comment and the code change can be

stacked as matrices H ∈ R2d×|x | and H ′ ∈ R2d×n , respectively.

3.3.3 The Co-Attention Layer. So far, the code change and the

old comment are represented independently. However, to capture

relationships between them, it is necessary to link and fuse their

information. This layer is used to address this need and is shared

by the two encoders. It takes as input the contextual vectors, i.e., H

and H ′, and outputs a comment-aware (edit-aware) feature vector

for each edit (comment token) along with the original contextual

vector of this edit (comment token) to the consequent layer.

In detail, each feature vector is indeed a context vector computed

by the dot-production attention mechanism [29]. Formally, the

feature vector дi of the comment token xi is calculated by:

дi = H ′βi (1)

βi = softmax(H ′�Wβhi) (2)

βi is the attention weights of xi on all edits and measures how

important each edit is with respect to xi . Wβ ∈ R2d×2d is the

trainable parameters. The feature vector д′
i
of the edit Ei is com-

puted in nearly the same way except that the attentions are derived

oppositely, i.e., from edits to comment tokens, as follows:

д′i = Hβ ′i

β ′i = softmax(H�W �
β
h′i)

716

We can see that дi signifies and captures the information related

to comment token xi from the whole code change. Meanwhile, д′
i

highlights and keeps the information related to edit Ei from the

whole old comment. These feature vectors provide a foundation for

capturing relationships between code and comments.

3.3.4 The Modeling Layer. This layer produces the final represen-

tation of each edit (comment token) based on its contextual vector

and comment-aware (edit-aware) feature vector. The two encoders

use two distinct Bi-LSTMs to learn such representations. In detail,

given a comment token xi , its final representation ui is calculated

as follows:

ui = Bi-LSTM(ui−1,ui+1, [дi ;hi])

The final representation u ′
i
of an edit Ei is calculated similarly:

u ′i = Bi-LSTM(u′i−1,u
′

i+1, [д
′

i ;h
′

i])

ui (u ′
i
) is expected to contain the contextual information of xi (Ei)

with respect to both the code change and the old comment. For

convenience, we refer to the stacked matrices of all ui and all u ′
i
as

U ∈ R2d×|x | andU ′ ∈ R2d×n , respectively.

3.4 Decoder

Weuse an LSTM-based decoder to generate new comments. Bi-LSTM

is not suitable for the decoder, since a new comment is generated

token by token. The decoder takes as inputU andU ′ obtained from

the two encoders and produces the new comment by sequentially

generating its tokens.

We concatenate the last hidden states of the two modeling layers

as the initial state s0 of the decoder’s LSTM. The right side of

Figure 3 illustrates how a comment token is generated. In detail,

at decoding step j, the input ŷj is first mapped into an embedding

eŷj using Comment Encoder’s embedding layer. ŷj is the previous

reference token when training or the previous generated token

when testing. Then, the decoder computes the hidden state sj based

on eŷj , the previous hidden state sj−1 and the previous output

vector oj−1 (computed by Equation 3), as follows:

sj = LSTM(sj−1, [eŷj ;oj−1])

The decoder also adopts the dot-production attention mecha-

nism, which derives a context vector at each time step as the repre-

sentation of the encoder’s input. There are two distinct encoders,

so the decoder computes two context vectors, i.e., cj from the old

comment and c ′
j
from the code change, following Equation 1 and 2.

Then, cj , c
′

j
and sj are concatenated to calculate an output vector

oj ∈ R
l and a vocabulary distribution Pvocab

j :

oj = tanh(V [cj ;c
′

j ; sj]) (3)

Pvocab
j = softmax(V ′oj)

V ∈ R(4d+l)×l and V ′ ∈ Rv×l are learnable parameters and v is

the size of the unified vocabulary. Pvocab
j can be directly used to

generate the target token. For example, we can choose the token

with the highest probability as the output of time step j.

However, the decoder cannot generate OOV words if it only

chooses tokens from the vocabulary. We observed that an OOV

word in a new comment usually can be found in its corresponding

old comment and/or new code. Therefore, we also adopt the pointer

generator [38] to alleviate the OOV problem following Liu et al. [28].

Specifically, two pointer generators are leveraged to copy tokens

from the old comment and the new code, respectively:

Pcmt
j (yj) =

∑

k :xk=yj

α jk

Pcode
j (yj) =

∑

k :t ′
k
=yj

α ′
jk

Pcmt
j (yj) and Pcode

j (yj) are the probabilities of copying yj from the

old comment and the new code. α jk and α ′
jk

are the attention

weights of xk and Ek with respect to time step j , and are calculated

with the context vectors cj and c ′
j

At last, the conditional probability of producing yj at time step j

is computed as:

p(yj |y<j ,x,E) = γjP
vocab
j (yj)+

(1 − γj)(θ jP
cmt
j (yj) + (1 − θ j)P

code
j (yj))

(4)

γj and θ j measure the probabilities of generating yj by selecting

from the vocabulary and copying from the old comment, respec-

tively. Each of them is modelled by a single-layer feed-forward

neural network jointly trained with the decoder.

4 DATA PREPARATION

In this work, we build our dataset from Java programs. However,

our approach is language-agnostic and we believe it can be easily

adapted for other languages. We concentrate on co-changes be-

tween methods and their header comments (method comments),

because Java methods can be precisely associated with their com-

ments, while it is non-trivial to accurately link comments and code

of other granularity, e.g., a statement. In addition, for comments, our

approach captures update patterns at sentence level, i.e., updates

one comment sentence at a time. This is because 1) it is relatively

easy to recognize patterns at a small but coherent granularity [54]

and 2) a method comment with multiple sentences can also be

updated iteratively. For convenience, in this section we use com-

ment to refer to a comment sentence and doc for a whole method

comment.

This section describes how we extract method-doc co-change in-

stances, i.e., <old code, new code, old doc, new doc>, from code repos-

itories, how we convert qualified instances into method-comment

co-change samples, i.e., <old code, new code, old comment, new com-

ment>, and how we build our dataset.

4.1 Data Collection

Wen et al. [50] collected a list of 1,500 Java repositories from GitHub

for studying code-comment inconsistencies. All the repositories

were selected based on a rigorous procedure, have no less than 500

commits, and were manually verified by Wen et al. to be popular

engineered projects. We reused this list to collect data. In detail, we

first cloned the 1,500 repositories from GitHub. However, we found

two repositories, i.e., pig4cloud/pig and wyouflf/xUtils, had been

removed from GitHub and two other repositories, i.e., liferay/liferay-

portal and JetBrains/MPS, were too large to be cloned in reasonable

time. Therefore, 1,496 repositories were successfully cloned. Then,

717

we constructed method-doc co-change instances by extracting mod-

ified methods and their corresponding docs from each non-merge

commit of every repository. Methods and docs were associated

using JavaParser [2]. We obtained 1,063K method-doc co-change

instances after filtering out the instances with unchanged docs.

4.2 Modified Method Extraction

It is non-trivial to extract modified methods from a commit, since

developers may change method signatures. To do this, we first

leveraged GumTree [8] to calculate method mappings between two

revisions. Then, based on such mappings, we compared the ASTs

of each old method and its new version to identify and extract

modified methods. Comments were ignored for AST comparisons.

However, GumTree is not designed for matching methods and

we found that for short methods and methods with similar bodies,

the method mappings extracted by GumTree are not always accu-

rate. To alleviate this problem, we customized GumTree’s matching

algorithm to better extract method mappings. In detail, GumTree’s

matching algorithm takes two treesT1 andT2 as input and contains

two ordered phases: the top-down phase and the bottom-up phase.

The top-down phase matches isomorphic subtrees between the two

trees and the bottom-up phase tries to find additional mappings in

a bottom-up way. We customized GumTree by adding an additional

phase named method-matching phase between the two phases.

This method-matching phase is based on our observation that

if methodmi in T1 and methodmj in T2 have the same signature,

they usually should be matched. In addition, if mi ’s signature is

different from that ofmj but they have the same name and no other

methods in bothT1 andT2 use this name, it is very likely thatmj is

modified frommi . Specifically, this phase first collects unmatched

MethodDeclaration nodes M1 and M2 from T1 and T2, respectively.

Then, for each methodmi inM1, if only one methodmj inM2 has

the same signature as it,mi andmj are matched and removed from

M1 and M2. After checking method signatures and updating M1

and M2, this phase continues to match the remaining methods in

M1 and M2 with respect to method names in a similar way.

It took over 290 hours to extract modified methods from the

1,496 repositories using 40 cores of Intel Xeon 2.7GHz CPU.

4.3 Data Preprocessing

We preprocessed the 1,063K method-doc co-change instances as

follows:

4.3.1 Filter Out Unqualified Instances. This step aims to reduce un-

related information in docs and filter out unqualified instances. We

observed that if a doc is a line comment, it is usually a commented

annotation instead of a method description. So, we first removed the

instances with line comments as docs. A doc can contain a free-form

description section and a tag section. Compared to the description

section, the tag section is more formal and structured, and can

be well handled using rule-based methods. Therefore, we focused

on the description section and deleted the tag section in each doc.

Then, “@inheritDoc”, code snippets and html tags were removed

from each doc. The docs containing “(non-Javadoc)” or non-ascii

characters were filtered out. In addition, since our approach focuses

on comment updating, which requires the old and new comments

to be non-empty and different, we filtered out the instances with

empty or identical docs. Finally, the instances containing abstract

methods were also deleted to reduce method mismatching. After

this step, we obtained 242,649 qualified instances.

4.3.2 Construct Co-Change Samples. A doc may contain multiple

sentences. This step is responsible for further processing docs and

matching sentences between each old doc and its new doc. Before

sentence matching, we first replaced emails, urls, references (e.g.,

“#123”) and versions (e.g., “1.2.3”) in docs with “EMAIL”, “URL”,

“REF” and “VERSION”, respectively, to reduce noise. Next, we split

each doc into sentences using NLTK [3], removed the sentences

with only punctuation marks and tokenized the remaining sen-

tences using the tokenizer described in Section 3.1.1. Then, given a

pair of docs, we calculated the word-level Levenshtein distance [24],

which is the minimum word edits (insertions, deletions and sub-

stitutions) required to change a sentence into the other, between

each old sentence and each new sentence and constructed a dis-

tance matrix. Based on this matrix, the old and new sentences are

matched in a best-fit way. After that, we filtered out the matched

pairs of which the two sentences are identical if ignoring punctua-

tion. If the distance of a pair is larger than the old sentence’s length

and 5, this pair should be regarded as a rewrite instead of an up-

date. Hence we also filtered out such pairs. Finally, each remaining

matched pair was used to construct a method-comment co-change

sample, i.e., <old code, new code, old comment, new comment>. We

can see that one method-doc co-change instance can be split into

multiple method-comment co-change samples, which share the

code change but have their own sentence pairs. As a result, we

constructed 172,745 method-comment co-change samples, which

belong to 147,844 method-doc co-change instances.

4.3.3 Set Max Length and Max Distance. Due to the limited mem-

ory of GPU and to reduce the training time, we set the max lengths

of code edit sequences, old comments, and new comments to be 500,

50, and 50 based on the corresponding 90th quantiles of our dataset.

In addition, a comment change is very likely to be a rewrite instead

of an update if the absolute or relative edit distance between the old,

and new comments is large. The relative edit distance is defined

as the absolute distance divided by the old comment’s length. We

find that the absolute and relative edit distances of 80% samples

are no more than 12 and 0.67, respectively. To reduce comment-

rewrite samples, we filtered out the samples of which the absolute

or relative distances is larger than 12 or 0.67. At last, we obtained

108,695 method-comment co-change samples, which come from

98,553 method-doc co-change instances.

4.4 Data Splitting

The 108,695 samples are extracted from 48,007 commits. A com-

mit may contain duplicate samples since developers may perform

systematic or recurring code changes in one commit [20, 33]. So,

before splitting the data, we deduplicated samples within each com-

mit to reduce bias, which resulted in the deletion of 2,981 samples.

For each project, we sorted its commits in the ascending order of

commit creation time, put the first 80% commits into the training

set, shuffled the remaining 20% commits and evenly split them into

the validation and test set. In this way, we ensure all comment

updates in the training set occurred before those in the validation

718

and test sets. We also noticed that git operations like “cherry-pick”,

“rebase” and “squash” can introduce duplicate samples among differ-

ent commits. Therefore, after splitting, duplicate samples between

the test (validation) and training sets were also filtered out by us. As

a result, our final training, validation and test sets consist of 85,657,

9,475, 9,673 method-comment co-change samples, respectively.

5 EVALUATION

In this section, we first present the baselines and the evaluation met-

rics. Then, we describe our experiment settings, research questions

(RQs), and the corresponding experimental results.

5.1 Baselines

To evaluate the performance of CUP, we use three baselines belong-

ing to different types: Origin, FracoUpdater and NNUpdater.

5.1.1 Origin. Origin is a special baseline which directly outputs

the old comments as results. By comparing CUP with Origin, we

can know whether the comments generated by CUP are closer to

the new comments than the old comments.

5.1.2 FracoUpdater. Fraco [37] is a tool proposed by Ratol and

Robillard to detect fragile comments with respect to rename refac-

torings and is shown to perform better than Eclipse’s refactoring

tool. Although the paper proposing Fraco does not claim that Fraco

can update fragile comments with rename refactorings, we find the

implementation of Fraco provides a quick-fix feature to fix detected

fragile comments. When developers conduct a rename refactoring,

Fraco will be triggered to identify the references between com-

ment phrases and the renamed identifier. The quick-fix feature can

then automatically replace fragile comment phrases with the new

identifier name based on heuristic rules. We manually extract the

detection algorithm and the quick-fix feature from Fraco’s source

code and wrap them as an offline comment updating tool named

FracoUpdater by us. Given a code change and a corresponding old

comment, FracoUpdater first leverages RefactoringMiner [47] to

detect rename refactorings from the code change. Then, for each

detected rename refactoring, it uses Fraco’s detection algorithm to

identify fragile comment phrases in the old comment with respect

to this rename. Finally, Fraco’s quick-fix feature is applied to fix

detected fragile phrases. If there is no rename refactoring detected,

no fragile comment phrase identified or no fix performed by Fraco’s

quick-fix feature, FracoUpdater outputs the old comment as the

result. We use FracoUpdater as a rule-based baseline.

5.1.3 NNUpdater. NNUpdater, short for Nearest-Neighbor-based

comment Updater, is an IR-based baseline proposed by us for this

task. Like NNGen [27] for commit message generation, the hypoth-

esis behind NNUpdater is that similar code changes may lead to

similar or even the same comment changes. Given a test sample, i.e.,

a code change and its old comment, NNUpdater first finds its most

similar training sample and then reuses the new comment of the

nearest neighbor as output. Specifically, to measure the similarity

simchg between two code changes, NNUpdater converts each of

them to a unified diff file, represents diff files as tf-idf vectors and

calculates the cosine similarity between such vectors. The similarity

simcmt between two old comments are also calculated in the same

way. The similarity sim between two samples is then defined as:

sim = α · simchg + (1 − α) · simcom, 0 ≤ α ≤ 1.

5.2 Evaluation Metrics

We use Accuracy, Recall@5 and two metrics proposed by us for

this task, namely Average Edit Distance (AED) and Relative Edit

Distance (RED), to evaluate CUP and the baselines.

Accuracy and Recall@5 are used to present to what extend an

approach can generate correct comments. We use correct comments to

refer to the generated comments which are identical to the reference

comments if we ignore the punctuation marks at the end of the

comments. In detail, Accuracy is the percentage of the test samples

where correct comments are generated on the first tries. Recall@5

is similar to Accuracy, but allows the approach to try 5 times.

AED measures the average edits developers need to perform

to perfectly update comments after using a JIT comment updater.

RED is similar to AED, but measures the average of relative edit

distances. Formally, given a test set with N samples, an approach’s

AED and RED are:

AED =
1

N

N∑

k=1

edit_distance(ŷ(k),y(k))

RED =
1

N

N∑

k=1

edit_distance(ŷ(k),y(k))

edit_distance(x (k),y(k))

where edit_distance is the word-level Levenshtein distance and ŷ(k)

refers to the comment generated for the kth sample. We can see

that if an approach’s RED is less than 1, developers can expect to

spend less efforts in updating comment after using this approach.

5.3 Experiment Settings

For our approach, 300-dimensional word embeddings are used for

edit actions, code tokens and comment tokens. The fastText model

is pre-trained on Common Crawl and Wikipedia [6], and the pre-

trained word embeddings are frozen during training. The hidden

states of the Bi-LSTMs and the LSTM in our model are 256 and

512 dimensions (i.e., d=256 and l=512), respectively. All the LSTMs

have only one layer. The unified vocabulary only keeps the tokens

appearing more than once, and its size turns out to be 44,578.

Code Change Encoder, Comment Encoder, and Decoder in our

model are jointly trained to minimize the cross entropy. During

training, we optimize the parameters of our model using Adam [21]

with a batch size of 32. A dropout [41] rate of 0.2 is used for all

LSTM layers and the dense layer before computing Pvocab
j . The

model is validated every 500 batches on the validation set using

perplexity (the smaller the better) with a batch size of 32. We set

the learning rate of Adam to 0.001 and clip the gradients norm by

5. The learning rate is decayed by a factor of 0.5 if the validation

perplexity does not decrease for 5 validations and we call this as a

trial. We stop training after 5 trials. The model with best (smallest)

validation perplexity is used for evaluation. When testing, beam

search of width 5 is used to generate comments.

For NNUpdater, we tune its α on the validation set through grid

search with 0.1 as the step size and surprisingly find that α = 0, i.e.,

only using code change similarity, can achieve the best Accuracy.

So, we set the α in NNUpdater to 0.

719

Table 2: Comparisons of our approach with each baseline

Approach Accuracy Recall@5 AED RED

Origin 0.0% (0) / 3.74 1.000

FracoUpdater 2.0% (196) / 3.76 1.022

NNUpdater 1.3% (125) 1.4% 15.25 7.068

CUP 16.7% (1612) 26.1% 3.54 0.958

*The numbers in brackets are the numbers of generated correct com-

ments.

5.4 RQ1: The Effectiveness of Our Approach

To investigate the effectiveness of our approach, i.e., CUP, we eval-

uate it and the baselines on our dataset in terms of Accuracy, Re-

call@5, AED, and RED. The evaluation results are shown in table 2.

Origin and FracoUpdater only generate one candidate for each

sample, so their Recall@5 is marked as “/”. We can see that CUP

outperforms all the baselines in terms of all evaluation metrics. It

can correctly update comments in 1672 (16.7%) cases on the first

tries, over 7 times more than the best-performing baseline, and can

generate correct comments for 26.1% of the test samples within 5

attempts.

Large improvements are achieved by CUP over NNUpdater in

terms of all metrics. When compared to Origin and FracoUpdater,

CUP performs much better on Accuracy and Recall@5, and also

outperforms them in terms of AED and RED by substantial margins.

We also conduct Wilcoxon signed-rank tests [51] at the confidence

level of 95%. The p-values of CUP compared with the three baselines

in terms of Accuracy, Recall@5, AED and RED are all less than 0.001,

which means the improvements achieved by CUP are statistically

significant. These results indicate CUP can update comments more

effectively and accurately than the three baselines. In addition, CUP

is the only approach of which the AED is less than Origin’s AED

and the RED is less than 1. This highlights that CUP can reduce the

edits developers need to perform for JIT comment updating.

To further figure out the reasons of CUP’s better performance,

we manually inspect the test results. Based on our inspection, we

find that compared to NNUpdater and FracoUpdater, CUP has two

major advantages:

First, CUP can learn and apply diverse comment update patterns

automatically, while NNUpdater and FracoUpdater are limited to

specific types of comment updates. Specifically, NNUpdater relies

on repeating new comments between test and training samples

to generate correct comments. It may work well on some specific

cases, but lacks the generalization ability. FracoUpdater is based

on manually summarized rules. It can obtain accurate results on

identifier-renaming-related comment updates, but cannot handle

other types of updates, e.g., updates related to type change. In

contrast, CUP leverages a probabilistic model to learn common

patterns of JIT comment updates from extant code-comment co-

changes. The patterns learned by CUP are more diverse than those

of NNUpdater and FracoUpdater, and can cover more samples. For

example, Table 3 presents a test sample. In this sample, the developer

used a wildcard, i.e., “*_compiler_t”, in the old comment to refer to

the annotation and the method name. When the annotation and the

method name are changed, the wildcard should also be modified

Table 3: Test sample 1

Code Change:

- @NativeType (" shaderc_spvc_compiler_t ")

- public static long shaderc_spvc_compiler_initialize (){

- long __functionAddress = Functions.

compiler_initialize;

+ @NativeType (" shaderc_spvc_context_t ")

+ public static long shaderc_spvc_context_create () {

+ long __functionAddress = Functions.context_create;

return invokeP(__functionAddress);

}

Old Comment: Any function operating on a {@code *_compiler_t} must

offer the basic thread-safety guarantee.

New Comment: Any function operating on a {@code *_context_t} must

offer the basic thread-safety guarantee.

NNUpdater: Operation fails.

FracoUpdater: Any function operating on a {@code *_compiler_t} must

offer the basic thread-safety guarantee.

CUP-co-attn: Any function operating on a {@code *_compiler_create}

must offer the basic thread-safety guarantee.

CUP-uni-vocab: Any function operating on a {@code *_compiler_t} must

offer the basic thread-safety guarantee.

CUP-fastText: Any function operating on a {@code *_context_context_t}

must offer the basic thread-safety guarantee.

CUP: Any function operating on a {@code *_context_t} must offer the

basic thread-safety guarantee.

accordingly. It is non-trivial to design and implement rules for this

kind of cases. Both NNUpdater and FracoUpdater fail to perform

the correct update, while CUP succeeds.

Second, CUP can update semantic references between code and

comments. NNUpdater does not take code-comment relationships

into consideration. FracoUpdater is able to detect some semantic

matching between renamed identifiers and comment phrases, but

its quick-fix rules cannot correctly update such matching. Different

from them, CUP explicitly adopts some components, such as the

co-attention mechanism and the unified vocabulary, to enable our

seq2seq model to effectively capture the relationships between code

and comments. Based on our manual inspection, CUP can update

not only lexical but also semantic references between code and

comments with code changes. Table 4 presents an example. We

can see that the developer fixed the “createSessionFolder” as “true”,

hence the corresponding description in the old comment should be

removed. NNUpdater and FracoUpdater fail to handle this case, but

CUP accurately identifies such description and removes it when

generating the new comment.

In summary, CUP significantly outperforms the three base-

lines. The RED of CUP indicates that CUP can help developers

reduce their efforts in JIT comment updating.

5.5 RQ2: The Effects of Main Components

The key of this task is to effectively capture the relationships and

references between code and comments. To meet this need, we

720

Table 4: Test sample 2

Code Change:

- private String getSessionFileName(String

sessionIdentifier , boolean createSessionFolder)

+ private String getSessionFileName(String

sessionIdentifier)

{

- File sessionFolder = folders.get(sessionIdentifier ,

createSessionFolder);

+ File sessionFolder = folders.get(sessionIdentifier ,

true);

return new File(sessionFolder , "data").

getAbsolutePath ();

}

Old Comment: If the session folder (folder that contains the file) does not

exist and createSessionFolder is true, the folder will be created.

New Comment: If the session folder (folder that contains the file) does

not exist, the folder will be created.

NNUpdater: Marker => Point

FracoUpdater: If the session folder (folder that contains the file) does not

exist and createSessionFolder is true, the folder will be created.

CUP-co-attn: If the session folder does not exist and createSessionFolder

is true, the folder will be created.

CUP-uni-vocab: If the session folder (folder that contains the file) does

not exist and createSessionFolder is true, the folder will be created.

CUP-fastText: If the session folder (folder that contains the file) does not

exist and createSessionFolder, the folder will be created.

CUP: If the session folder (folder that contains the file) does not exist, the

folder will be created.

adopt a co-attention mechanism, build a unified vocabulary, and

use the word embeddings pre-trained by fastText for better repre-

senting, linking and fusing the information in code changes and

comments. In this research question, we compare CUP with its

three variants: 1) CUP-co-attn, which removes the co-attention

layer from CUP, 2) CUP-uni-vocab, which uses two distinct vo-

cabularies, instead of a unified vocabulary, for code and comment

tokens, respectively, and 3) CUP-fastText, which does not use the

embeddings pre-trained by fastText. Such comparisons can help

us understand the impacts of the three components to CUP’s per-

formance. There are some other improvements adopted by CUP,

such as the special tokenizer for preserving comment format and

the copy mechanism. We do not investigate their effects because

some of them are believed by us to be indispensable for this task

and the effectiveness of others has been investigated by previous

related works.

The results of our comparisons are presented in Table 5. We can

see that CUP performs better than the three variants in terms of all

metrics. For Accuracy, the improvements achieved by CUP range

from 1.3% to 3.8%, and CUP can generate at least 118 more correct

comments than the variants. Wilcoxon signed-rank tests [51] are

also used to check the significance of the performance improve-

ments. All the p-values are less than 0.01, which means CUP sig-

nificantly outperforms the three variants. These results indicate

that the co-attention mechanism, the unified vocabulary and the

fastText embeddings are useful and effective for this task.

Table 5: Comparisons of our approach with three variants

Approach Accuracy Recall@5 AED RED

CUP-co-attn 12.9% (1250) 23.6% 3.72 1.046

CUP-uni-vocab 15.4% (1494) 25.3% 3.59 0.989

CUP-fastText 13.6% (1320) 23.5% 3.73 1.057

CUP 16.7% (1612) 26.1% 3.54 0.958

To better understand these performance differences, we manu-

ally inspect the test results of the three variants. We find that CUP

will capture more incorrect code-comment references without the

co-attention mechanism, and it may not know how to update com-

ments or may perform inaccurate updates on the right references

if the unified vocabulary and the fastText embeddings are replaced.

As an example, for sample 1 in Table 3, CUP-co-attn builds an in-

correct reference between “t” and “create”, CUP-uni-vocab cannot

predict the proper update and regards modifying nothing as the

best solution, and CUP-fastText successfully captures the reference

between “compiler” and “context” but inaccurately generates two

consecutive “context” to update “compiler”. In the sample presented

in Table 4, CUP-co-attn predicts that the code element “createSes-

sionFolder” is related to the comment phrase “(folder that contains

the file)”, and incorrectly removes such phrase. CUP-uni-vocab can-

not handle this case and chooses to update nothing. CUP-fastText

only captures part of the reference and makes an inaccurate update

by only deleting “ is true”. These results demonstrate the three

components all play an important role in capturing and updating

code-comment references.

In summary, the co-attention mechanism, the unified vo-

cabulary, and the fastText embeddings adopted by CUP are

helpful for capturing and updating code-comment references

and can boost the effectiveness of CUP.

6 DISCUSSION

In this section, we discuss the situations where CUP may fail, a

quality assurance method which can improve CUP’s practicability,

the performance of CUP in terms of BLEU-4 and METEOR, and the

threats to the validity of this work.

6.1 Where Does Our Approach Fail

We carefully inspect a number of randomly selected samples where

CUP fails to generate correct comments and summarize several

bad situations of CUP from them. A common bad situation is that

developers only optimize their language expression and the old

and new comments are of the same meaning. Such optimizations

can be lexical, e.g., fixing a typo, capitalizing the first word and

pluralizing a verb, or semantic, i.e., using a better way to express

the same meaning, or both. If the pattern of an expression update

is rare in the dataset, CUP may not be able to capture and apply it

without any clue.

In the second situation, the code changes and old comments do

not provide enough information for CUP to infer the correspond-

ing comment updates. For example, in a test sample, the developer

721

Table 6: The performance of our approach with the QA filter

Approach Accuracy Recall@5 AED RED

CUP 16.7% (1612) 26.1% 3.54 0.958

CUP+QA 31.8% (1612) 38.3% 2.98 0.920

added the phrase “(chunked)” in the new comment. However, “chun-

ked” does not appear in the code change or the old comment, and

cannot be derived from any code element. Therefore, CUP is not

able to perform the update.

Another situation is that the code changes and/or comment up-

dates are too complicated for CUP to perfectly handle. For example,

the developer may modify several similar code elements in a code

change and update their semantic references in the comment si-

multaneously. CUP may correctly update some of the comment

phrases but not always all. We think there are two main reasons pre-

venting CUP from perfectly handling complicated code-comment

co-changes. First, CUP does not leverage program analysis tools

like RefactoringMiner to explicitly extract information from code

changes. Although CUP can handle many situations without such

tools, it may get confused and fail to focus on the important parts

when a code change contains many modifications unrelated to the

comment update. Second, for each sample, CUP only scans the old

comment and generates the new comment once. Therefore, it may

be challenging for CUP to correct many comment phrases simulta-

neously. It would be interesting to address these limitations, but it

is beyond the scope of this work.

In addition, it is worth mentioning that some samples may fit

multiple situations instead of only one. For example, developers

may update multiple code-comment references and optimize the

language expression in one comment change.

6.2 Quality Assurance for Our Approach

From our manual inspection, we also find that for the samples where

CUP is not capable of performing perfect JIT comment updates,

CUP may choose to modify nothing and directly generate the old

comments. Based on this finding, we propose a quality assurance

filter (QA filter) to improve the practicability of CUP. Specifically, for

each sample, the QA filter simply compares the comment generated

by CUP with the old comment. If they are identical, the QA filter

marks this sample as imperfect (i.e., cannot be perfectly handled

by CUP) and removes it.

After using this QA filter, we re-evaluate CUP on our dataset.

Table 6 presents the evaluation results. We can see that the QA filter

improves CUP in terms of all metrics. In detail, it nearly doubles the

Accuracy as the consequence of filtering out 4602 out of 9673 test

samples. The AED and RED also decrease by substantial margins.

These results indicate that the QA filter can make our approach

more useful and accurate in practice and can improve developers’

confidence on our approach.

6.3 Other Evaluation Metrics

Prior studies often use BLEU-4 and METEOR, which are flexible

in word order, to evaluate comment generation methods. We also

compare the performance of CUP and the baselines on our dataset

Table 7: The BLEU-4 and METEOR scores of our approach

and the baselines

Approach #Update BLEU-4 METEOR

Origin 0/9673 70.2 50.2

FracoUpdater 631/9673 70.5 50.3

NNUpdater 9142/9673 14.3 17.7

CUP 5071/9673 72.0 51.2

*#Update refers to the number of the test samples where

the generated comments are different from the old com-

ments.

in terms of BLEU-4 and METEOR. The evaluation results are shown

in Table 7, where BLEU-4 and METEOR scores are presented as

percentage values between 0 and 100. We can see that CUP can

obtain better BLEU-4 and METEOR scores than the three base-

lines. Since BLEU-4 and METEOR are calculated at corpus level,

statistical significance is tested using paired bootstrap resampling

following [22] with 1000 resamples. All the p-values are less than

0.001, which indicates that our approach significantly outperforms

the three baselines in terms of the two metrics.

In detail, CUP improves NNUpdater by large margins. Origin can

achieve high BLEU-4 and METEOR scores since it directly outputs

the old comments, which are naturally similar to the correspond-

ing new comments updated by developers. The performance of

FracoUpdater is close to that of Origin, because in most (9042 out

of 9673) cases, FracoUpdater does not perform any update and di-

rectly outputs the old comments too. In contrast, CUP performs

updates on 5071 (52.4%) samples and significantly outperforms Ori-

gin and FracoUpdater in terms of BLEU-4 and METEOR. These

results further confirm the better performance of CUP.

6.4 Threats to Validity

One threat to the validity of this work is that our dataset is built

only from Java projects and only contains the updates of method

comments, which may not be representative of all programming

languages and comment types. However, Java is one of the most

popular programming languages. Method comments are an im-

portant type of comments and are often referred to by developers

for program comprehension. Besides, our proposed model is inde-

pendent of programming languages and comment types. It can be

applied to projects of other languages and be trained to generate

other types of comments.

Another threat is related to the method mappings we build from

commits. Before extracting modified methods from a commit, we

use GumTree to match the methods in two revisions. However,

some method mappings identified by GumTree are suboptimal.

We mitigate this threat by 1) adding a new phase in GumTree to

improve its accuracy in method matching, 2) filtering the samples

with abstract methods, which are often mismatched. In addition,

we manually checked 200 samples in our test set and only found

one suboptimal method mapping. Therefore, we believe the threat

is limited.

722

7 RELATEDWORK

This section discusses related work concerning code-comment co-

evolution, comment generation, inconsistent comment detection.

7.1 Code-Comment Co-Evolution

Prior works have investigated the co-evolution between source code

and code comments from different perspectives [9, 10, 16, 18, 25, 50].

For example, Fluri et al. [9, 10] studied how source code and com-

ments co-evolved and found that 90% of the comment changes

triggered by code changes were done in the same revision as the

associated code changes. They also highlighted that API comments

are often adapted retroactively. In addition, Ibrahim et al. [16] in-

vestigated the relationship between comment update practice and

software bugs in three open-source systems and found abnormal

comment update behavior is a good indicator for predicting fu-

ture bugs. Linares-Vasquez et al. [25] studied how developers doc-

umented database usages in method comments and pointed out

that the comments of database-related methods are less frequently

updated than source code. Recently, Wen et al. [50] conducted a

large-scale empirical study, which analyzed the chances that dif-

ferent code change types trigger comment updates and defined a

taxonomy of the code-comment inconsistencies fixed by developers.

Different from these studies, our work aims to automatically

update comments with code changes. The empirical findings pre-

sented by previous studies motivate our work and shed light into

the JIT comment updating task.

7.2 Comment Generation

Automatic comment generation techniques may also help develop-

ers update comments by directly generating new comments from

changed methods. Many previous works proposed to generate code

comments using rule-based and IR-based methods [12, 31, 32, 40, 52].

For example, Sridhara et al. [40] proposed an approach to generate

comments for Java methods using summary information in source

code and manually defined templates. To generate a comment for

a code snippet, ColCom [52] first finds similar code snippets from

open source projects and then reuses and tailors their comments as

output. Recently, more and more researchers leveraged probabilistic

models to perform comment generation [14, 15, 17, 23, 49, 57]. For

example, Iyer et al. [17] proposed a neural attention model named

CODE-NN to generate summaries for C# and SQL snippets. Deep-

Com, an approach proposed by Hu et al. [14], uses a structure-based

traversal (SBT) method to flatten ASTs and combines such flattened

sequences with an encoder-decoder model to generate comments

for Java methods. In their follow-up work, Hu et al. [15] devised

Hybrid-DeepCom to enhance DeepCom by combining source code

and the SBT sequences together to generate comments. In a paral-

lel work, LeClair et al. [23] proposed a similar model, which also

represents code texts and the SBT sequences using two distinct

encoders, for comment generation.

Although our approach can be regarded as generating comments

through a seq2seq model, it focuses on updating pre-existing com-

ments instead of generating comments from scratch. Moreover,

when updating a comment, our approach considers both the old

comment and the corresponding code change instead of only the

new code. Therefore, we believe the JIT comment updating problem

and the comment generation problem are different.

7.3 Inconsistent Comment Detection

Researchers have investigated the detection of inconsistent com-

ments. Most prior works focused on the comments related to spe-

cific code properties or of specific types [39, 43–46, 56]. For example,

Tan et al. [43–45] proposed a series of approaches to detect code-

comment inconsistencies related to specific programming concepts,

such as lock mechanisms [43, 44], function calls [43] and inter-

rupts [45]. Their approaches extract concept-related rules from

comments based on NLP techniques and check source code against

the extracted rules using static program analysis. Sridhara et al. [39]

proposed a technique to identify obsolete TODO comments based

on information retrieval, linguistics and semantics. Several studies

targeted at general comments and took code changes into consider-

ation [26, 30, 37]. For instance, Ratol and Robillard [37] proposed a

rule-based approach named Fraco to detect fragile comments with

respect to identifier renaming. Liu et al. [26] leveraged machine

learning techniques and 64 manually-crafted features derived from

code, comments and code-comment relationships to check whether

to update a comment when its associated code is changed.

All these techniques focus on detecting inconsistent or obso-

lete comments, while our approach targets at automatically up-

dating comments with code changes to avoid the introduction of

inconsistent and obsolete comments. We believe our approach is a

complement instead of a competitor to these techniques.

8 CONCLUSION AND FUTUREWORK

This work aims to reduce and avoid the introduction of bad com-

ments by automatically updating comments with code changes, i.e.,

automating Just-In-Time (JIT) comment updating. To tackle this

task, we propose an approach named CUP (Comment UPdater),

which leverages a novel seq2seq model to learn common patterns of

JIT comment updates from extant code-comment co-changes and

can automatically generate new comments based on the correspond-

ing old comments and code changes. Several improvements, such

as a special tokenizer and a co-attention mechanism, are introduced

in CUP to handle the characteristics of this task. Comprehensive

experiments on a dataset with over 108K code-comment co-change

samples show that CUP outperforms three baselines by significant

margins and can reduce the edits that developers perform for JIT

comment updating.

In the future, we plan to investigate the effectiveness of CUP

in cross-project settings. We also plan to adapt CUP to other code

granularity, such as statements, and other comment types, such as

inner comments of methods. In addition, it would be an interesting

future direction to propose more advanced techniques to address

CUP’s limitations.

ACKNOWLEDGMENTS

This research was partially supported by the National Key R&D Pro-

gram of China (No. 2018YFB1003904), NSFC Program (No. 61972339),

the Australian Research Council’s Discovery Early Career Researcher

Award (DECRA) (DE200100021), and Alibaba-Zhejiang University

Joint Institute of Frontier Technologies.

723

REFERENCES
[1] 2020. A commit in Apache Kafka. https://github.com/apache/kafka/commit/

9dc76f8872b862ca008562cdcf8cf50524e2eaa3.
[2] 2020. JavaParser. https://javaparser.org/.
[3] 2020. Natural language toolkit NLTK 3.5 documentation. http://www.nltk.org/.
[4] 2020. Our replication package. https://tinyurl.com/jitcomment.
[5] 2020. Our source code on GitHub. https://github.com/tbabm/CUP.
[6] 2020. Word vectors for 157 languages. https://fasttext.cc/docs/en/crawl-vectors.

html.
[7] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. 2005.

A study of the documentation essential to software maintenance. In Proceed-
ings of the 23rd annual International Conference on Design of Communication:
Documenting & Designing for Pervasive Information. 68–75.

[8] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th International Conference on Automated Software Engineering.
313–324.

[9] Beat Fluri, Michael Wursch, and Harald C Gall. 2007. Do Code and Comments
Co-Evolve? On the Relation between Source Code and Comment Changes. In
Proceedings of the 14th Working Conference on Reverse Engineering. 70–79.

[10] Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C Gall. 2009. Analyzing
the co-evolution of comments and source code. Software Quality Journal 17, 4
(2009), 367–394.

[11] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas
Mikolov. 2018. Learning Word Vectors for 157 Languages. In Proceedings of the
International Conference on Language Resources and Evaluation.

[12] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In Proceedings of the 17th Working Conference on Reverse Engineering. 35–44.

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
Computation 9, 8 (1997), 1735–1780.

[14] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment genera-
tion. In Proceedings of the 26th International Conference on ProgramComprehension.
200–210.

[15] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2019. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering (2019), 1–39.

[16] Walid M Ibrahim, Nicolas Bettenburg, Bram Adams, and Ahmed E Hassan. 2012.
On the relationship between comment update practices and software bugs. Jour-
nal of Systems and Software 85, 10 (2012), 2293–2304.

[17] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics. 2073–2083.

[18] Zhen Ming Jiang and Ahmed E Hassan. 2006. Examining the evolution of code
comments in PostgreSQL. In Proceedings of the International Workshop on Mining
Software Repositories. 179–180.

[19] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and
Andrea Janes. 2020. Big Code!= Big Vocabulary: Open-Vocabulary Models for
Source Code. CoRR abs/2003.07914 (2020). https://arxiv.org/abs/2003.07914

[20] Miryung Kim and David Notkin. 2009. Discovering and representing systematic
code changes. In Proceedings of the 31st International Conference on Software
Engineering. 309–319.

[21] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 3rd International Conference on Learning Represen-
tations.

[22] Philipp Koehn. 2004. Statistical significance tests for machine translation evalua-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing. 388–395.

[23] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering. 795–806.

[24] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet Physics Doklady, Vol. 10. 707–710.

[25] Mario Linares-Vásquez, Boyang Li, Christopher Vendome, and Denys Poshy-
vanyk. 2015. How do developers document database usages in source code?. In
Proceedings of the 30th International Conference on Automated Software Engineer-
ing. 36–41.

[26] Zhiyong Liu, Huanchao Chen, Xiangping Chen, Xiaonan Luo, and Fan Zhou. 2018.
Automatic detection of outdated comments during code changes. In Proceedings of
the 42nd Annual Computer Software and Applications Conference, Vol. 1. 154–163.

[27] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation: how
far are we?. In Proceedings of the 33rd International Conference on Automated
Software Engineering. 373–384.

[28] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019.
Automatic Generation of Pull Request Descriptions. In Proceedings of the 34th
International Conference on Automated Software Engineering. 176–188.

[29] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective
approaches to attention-based neural machine translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing. 1412–1421.

[30] Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang, and
Ahmed E Hassan. 2008. Understanding the rationale for updating a function’s
comment. In Proceedings of the International Conference on Software Maintenance.
167–176.

[31] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In Proceedings of the 21st International Conference on Program
Comprehension. 23–32.

[32] Najam Nazar, Yan Hu, and He Jiang. 2016. Summarizing software artifacts:
A literature review. Journal of Computer Science and Technology 31, 5 (2016),
883–909.

[33] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar Al-Kofahi, and
Tien N Nguyen. 2010. Recurring bug fixes in object-oriented programs. In
Proceedings of the 32nd International Conference on Software Engineering. 315–
324.

[34] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to program-
mers Taxonomies and characteristics of comments in operating system code. In
Proceedings of the 31st International Conference on Software Engineering. 331–341.

[35] David Lorge Parnas. 2011. Precise documentation: The key to better software. In
The Future of Software Engineering. Springer, 125–148.

[36] Luca Pascarella, Magiel Bruntink, and Alberto Bacchelli. 2019. Classifying code
comments in Java software systems. Empirical Software Engineering (2019), 1–39.

[37] Inderjot Kaur Ratol and Martin P Robillard. 2017. Detecting fragile comments. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. 112–122.

[38] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point:
Summarization with pointer-generator networks. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics. 1073–1083.

[39] Giriprasad Sridhara. 2016. Automatically detecting the up-to-date status of ToDo
comments in Java programs. In Proceedings of the 9th India Software Engineering
Conference. 16–25.

[40] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the International Conference on Automated Software
Engineering. 43–52.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1, 1929–1958.

[42] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality analysis
of source code comments. In Proceedings of the 21st International Conference on
Program Comprehension. 83–92.

[43] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In Proceedings of the 21st ACM SIGOPS Symposium on
Operating Systems Principles. 145–158.

[44] Lin Tan, Ding Yuan, and Yuanyuan Zhou. 2007. Hotcomments: how to make
program comments more useful?. In Proceedings of the 11th USENIX Workshop on
Hot Topics in Operating Systems. 1–6.

[45] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining anno-
tations from comments and code to detect interrupt related concurrency bugs. In
Proceedings of the 33rd International Conference on Software Engineering. 11–20.

[46] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @ tCom-
ment: Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In
Proceedings of the 5th International Conference on Software Testing, Verification
and Validation. 260–269.

[47] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. In Proceedings of the 40th International Conference on Software Engineering.
483–494.

[48] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In Proceedings of the 41st International Conference on Software
Engineering. 25–36.

[49] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd International Conference on
Automated Software Engineering. 397–407.

[50] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In Proceedings of the
27th International Conference on Program Comprehension. 53–64.

[51] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in Statistics. Springer, 196–202.

[52] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom: Mining existing source
code for automatic comment generation. In Proceedings of the 22nd International
Conference on Software Analysis, Evolution, and Reengineering. 380–389.

[53] Scott N Woodfield, Hubert E Dunsmore, and Vincent Yun Shen. 1981. The effect
of modularization and comments on program comprehension. In Proceedings of

724

the 5th International Conference on Software Engineering. 215–223.
[54] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and

Alexander L Gaunt. 2018. Learning to represent edits. In Proceedings of the 7th
International Conference on Learning Representations.

[55] Annie TT Ying, James L Wright, and Steven Abrams. 2005. Source code that
talks: an exploration of Eclipse task comments and their implication to repos-
itory mining. In Proceedings of the International Workshop on Mining Software
Repositories. 1–5.

[56] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In Proceedings of the 39th International Conference on Software Engineering.
27–37.

[57] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. 2019. Aug-
menting Java method comments generation with context information based on
neural networks. Journal of Systems and Software 156 (2019), 328–340.

725

