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Abstract. In real-world industrial scenarios, unsupervised time series
anomaly detection for massive multi-dimensional sensor data is a press-
ing research topic. While existing unsupervised anomaly detection meth-
ods have achieved significant progress in anomaly detection performance,
they still face two limitations. First, existing methods primarily model
and analyze data on a single time scale, ignoring the rich dependencies
between features at different time scales. Second, traditional methods
struggle to capture features across different time scales, failing to rep-
resent the temporal structure of the data comprehensively. To address
these challenges, based on a multi-scale data augmentation approach
and multi-scale Fusion block, we propose an unsupervised anomaly de-
tection model, MSAnomaly, to improve the ability to learn sequential
patterns at various time scales. Specifically, MSAnomaly transforms the
original sequence into multiple time-scale sequences using a multi-scale
data augmentation approach, fusing different time resolution features by
multi-scale fusion block to model the time series effectively. Our proposed
MSAnomaly enables effective model training with limited data. Exten-
sive experiments demonstrate that MSAnomaly achieves state-of-the-art
performance across multiple real-world benchmark datasets for anomaly
detection.

Keywords: Time series anomaly detection · multi-scale · feature fusion.

1 Introduction

Time series anomaly detection is critical in domains such as industrial moni-
toring and medical diagnosis. This process involves identifying deviations from
normal data distributions within large temporal datasets by modeling the typical
patterns of time series data. The core task is to model the time series to uncover
its structure and dynamic changes, which involves analyzing trends, periodicity,
seasonality, and irregular fluctuations.

With the advancement of deep learning techniques, deep neural networks
have become widely used for modeling time series. Deep neural networks in
2 * corresponding authors
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sequence modeling include three main models: (i) Recurrent Neural Networks
(RNNs), which handle time dependence in sequence data but are slow and com-
putationally intensive for long sequences due to their step-by-step processing.
(ii) Transformer-based models, which capture long-distance dependencies using
a self-attentive mechanism, but face rising computational and memory require-
ments as sequence length increases, complicating training and inference [26].
These models also have numerous parameters and require substantial data for
efficient training. (iii) Temporal Convolutional Networks (TCNs) , which are
more lightweight compared to RNNs and Transformers, making them suitable
for resource-constrained scenarios. TCNs expand the receptive field by stacking
multiple convolutional layers to capture both local and global information in
sequence data. However, TCNs may still be limited by local information, neces-
sitating additional mechanisms to integrate global information effectively.

Traditional time series analysis models often overlook learned representations
across different time scales. Recent deep learning methods address this by incor-
porating multiresolution frameworks. TimesNet [22] decomposes complex tempo-
ral variations into multiple time scales based on predominant frequency-domain
patterns, extracting variations over multiple cycles and inter-week periods. MS-
GNet [3] utilizes frequency-domain analysis and adaptive graph convolution to
capture correlations between different sequences across multiple time scales, en-
abling effective long-term and short-term forecasting. However, this frequency
decomposition approach may result in the loss of some time-domain informa-
tion, particularly for non-periodic or irregular time series data, which may not
be fully captured by frequency-domain representations.

Certain areas require simultaneous focus on short-term fluctuations at high
resolution and long-term trends at low resolution. A single focus may distort
interpretation and decision-making, especially in domains requiring a nuanced
understanding of temporal dynamics. For instance, in finance, events may cause
dramatic short-term and medium-term stock fluctuations while the long-term
trend remains stable [27]. Similarly, for heart patients, sudden short-term changes
in heart rate may signal potential issues, while long-term trends reflect treatment
effects or deterioration [15]. However, Traditional transform-based, convolutional-
based, and RNN-based deep learning methods [9, 26] typically fuse features from
a fixed and single time scale when processing time series data. This limits their
ability to capture the correlation characteristics of the series fully.

To address the shortcomings of existing models that overlook correlations
between time scales and series stability, inspired by PatchTST [12], which de-
composes series data into multiple patches, and we consider the characteristics of
time series data, most of the trends and seasonal temporal relationships can be
preserved while extending the data after decomposing it into two subsequences
by parity downsampling. We introduce MSAnomaly, a novel multi-scale augmen-
tation approach for improved time series learning. MSAnomaly aims to provide
a more robust framework for understanding and predicting complex temporal
anomaly patterns. The main contributions of this paper are as follows:
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– We propose a novel anomaly detection model, MSAnomaly, based on a multi-
scale data augmentation approach to accurately and efficiently model time
series data by capturing intricate sequence patterns across multiple temporal
resolutions.

– To tackle the challenge of integrating multi-scale time series features, we pro-
pose a multi-scale fusion block that effectively fusion feature dependencies
from various time scales, improving the predictability of time-series repre-
sentation learning.

– Extensive experiments on real-world datasets demonstrate that MSAnomaly
outperforms 14 baseline methods, establishing state-of-the-art performance
in most anomaly detection datasets.

2 Related Works

In this section, we present tasks relevant to our approach, including time series
anomaly detection, data augmentation, and feature fusion.

2.1 Time Series Anomaly detection

The main purpose of anomaly detection is to isolate anomalies hidden in the data
that are not easily detected. Machine learning-based algorithms play a signifi-
cant role. Density-based methods [2] classify anomalies by learning the density
distribution of data points in the feature space, while distance-based methods
[1] utilize the distance information between data points to assess anomalies.
Classification-based methods [14] treat time series anomaly detection as a clas-
sification problem.

Current deep unsupervised learning techniques for detecting time series anoma-
lies can be broadly classified into two main categories: reconstruction-based
methods and prediction-based methods. Reconstruction-based methods use the
reconstruction error of the time series as the anomaly score, such as VAE [21] and
LSTM-VAE [13]. Reconstruction methods incorporating Transformer [20] have
likewise emerged in recent years. However, reconstruction-based methods typi-
cally provide after-the-fact alarms, as they capture anomalies post-occurrence.

Prediction-based methods, on the other hand, can predict anomalies before
they occur, providing advance warnings in real industrial environments. These
methods extract anomalies by comparing the error between predicted values
and actual observations. MTAD-GAT [25] uses graph attention to construct re-
lationships between features and time dependencies, distinguishing normal data
from outliers in multi-dimensional time series. Anomaly detection methods us-
ing TCNs [6] employ stochastic convolution and dilation to adapt to data with
temporal and large acceptance domains. TCNs use the same convolution kernel
for all time steps in each layer, which limits its ability to represent complex time
series patterns efficiently. To mitigate this limitation, we consider using a rich set
of convolutional filters to extract diverse features for feature fusion, enhancing
the dynamic adaptation of TCN.
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2.2 Data Augmentation

Data augmentation aims to learn data features from different perspectives. Learn-
ing the characteristics of anomalies across various perspectives is challenging, as
normal data points tend to exhibit similar latent patterns, leading to consis-
tent reconstruction representations and prediction performance. This approach
amplifies the difference between normal and anomalous points. DCdetector [24]
leverages channel independence and uses a patch-wise approach to represent
time series data at two scales: patch-wise and patch-in, for contrastive learn-
ing. Similarly, PatchTST [12] aggregates time steps into subseries-level patches,
enhancing locality and capturing comprehensive semantic information that is
not available at the point level. TimesNet [22] employs Fourier transform for
frequency domain analysis, converting one-dimensional time series into a set of
multi-period two-dimensional tensors, with each period involving intra-period
and inter-period variations.

2.3 Feature Fusion

Feature fusion combines features from different layers or sources to improve
model performance. DenseNet [7] encourages feature reuse by connecting each
layer to all others, enhancing information transfer efficiency. FPN (Feature Pyra-
mid Networks) [11] transversally connects high-level features to low-level features
through upsampling for multi-scale feature fusion. GCViT [5] combines global
contextual self-attention modules and standard local self-attention to model
long-range and short-range spatial interactions. Revisiting VAE [21] fuses global
and local frequency features into Conditional Variational Auto-Encoder (CVAE)
conditions, significantly improving the accuracy of reconstructed normal data.

3 The Proposed Approach

Problem definition and formulation: In the context of multivariate time
series forecasting, we consider a system containing N variables. Where the his-
torical data is provided through a backward-looking window Xt−L:t of length L,
this matrix includes the observed values of each variable from time point t− L
to t − 1. The task of time series forecasting is to estimate the values of these
variables at the next T time steps based on this historical data. The output is the
prediction matrix X̂t to t+T−1, which contains the predicted values of all vari-
ables from time point t to t+ T − 1. The anomaly detection problem is defined
as follows: given an input time series Xt−L:t, predict X̂t:t+T for an unknown
test sequence Xtest that is identically distributed to the training sequence with
a prediction window of length T . Here, X̂t:t+T consists of a series of predicted
values xt, xt+1, . . . , xt+T , where each xt denotes the predicted value of a data
point. The state of each data point is then labeled by calculating the error be-
tween the predicted value and the actual observed value, resulting in the label
sequence Ytest = (yt, yt+1, . . . , yt+T ). Each label yt ∈ {0, 1}indicates whether the
corresponding data point is normal "0" or abnormal"1".
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Fig. 1: The overall architecture of MSAnomaly. MSAnomaly consists of a multi-
scale data augmentation approach and multi-scale fusion block, which can cap-
ture changes in different time scales through fusion convolution blocks and learn
based on up-sampling fusion representation.

3.1 Overall Architecture

The overall architecture is illustrated in Fig 1. The process comprises four main
components: (a) multi-scale data augmentation, (b) multi-scale fusion block, (c)
time series prediction, and (d) time series anomaly detection. (a) MSAnomaly
applies a multi-scale augmentation approach to the input data, generating multi-
ple time series at varying resolutions. Each time scale produces two subsequences
through continuous downsampling. (b) A parallel fusion convolution block pro-
cesses these subsequences using diverse convolution filters to extract both local
and global features of the time series. The resulting features at different resolu-
tions are then upsampled, reaggregated into a new sequence representation, and
incorporated back into the original time series as residuals. (c) The time series is
then predicted using a fully connected network acting as a decoder. (d) Finally,
data points with large prediction errors are identified as anomalies, completing
the anomaly detection process.

3.2 Multi-scale Data Augmentation

Our proposed Multi-scale Data Augmentation approach transforms time series
data into multi-scale data inputs. The input data Xt−L:t represents observations
from time t− L to t− 1. We process this data using the normalization function
RevIN [8] which has been shown to enhance the training efficiency of the model
and effectively mitigate data distribution drift. The normalization process is
defined as:

Xin = RevIN(Xt−L:t)

Drawing inspiration from PatchTST [22], we employ a patch-based approach
to transform the time series into multiple time scales. For a selected set of
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time scales {s1, · · · , sk}, we reshape the multivariate time series inputsXin ∈
RL×N into a 3D tensor, creating representations for different time scales using
the following equations:

Xi = Reshapesi,fi(Xin), si =
L

fi

Here, Xi ∈ RN×si×fi denotes the reshaped representation for the time scale si.
Where L is the length of the sequence, and fi is the scale partition factor. The
fi factor is then embedded into a vector of size dmodel, represented as Xemb and
computed as follows:

Xemb = Conv1D(Xi) +PE

We utilize a one-dimensional convolutional filter to project Xi into a dmodel-
dimensional matrix. PE ∈ Rdmodel×L represents the positional embedding of the
input Xi. The down-sampling decomposition process involves decomposing Xi

emb
into Xi

L ∈ RN× si
2 ×dmodel and Xi

R ∈ RN× si
2 ×dmodel . These decomposed sequences

are then used as input matrices for the multi-scale Fusion Block.

3.3 Multi-scale Fusion

We propose a novel multi-scale fusion block to capture global information rep-
resentations and local dependencies of sequences at different time scales. Com-
pared to TCNs that use a single shared convolution filter at each layer, our fusion
convolution block enhances feature extraction by aggregating information from
sub-sequences of different time-scale decompositions, each providing a local and
global view of the time series at various temporal resolutions. Compared to TCNs
using shared convolution, our proposed fused convolutional module not only ex-
tracts features at different time scales through a diverse set of convolutional
filters but also realizes a larger receptive field similar to extended convolution.

We achieve global information extraction by adjusting the size of spatial pool-
ing to reduce the spatial dimension of each channel of Xi

L to a one-dimensional
vector with global information. The global channel context is computed as fol-
lows:

Global(Xi
L) = B

(
PWConv2

(
δ
(
B
(
PWConv1(Avg(Xi

L))
))))

Here, Avg(·) denotes average pooling, and pointwise convolution PWConv is
used for local channel context aggregation. The kernel sizes of PWConv1 and
PWConv2 are (d× C) × C

r × 1, where r is the channel reduction factor, B rep-
resents the BatchNorm, and δ denotes the Rectified Linear Unit (ReLU). The
local channel context branching structure is implemented by PWConv and is
computed as follows:

Local(Xi
R) = B

(
PWConv2

(
δ
(
B
(
PWConv1(X

i
R)

))))
We then aggregate global and local scale feature information using the fol-

lowing equations:
w = σ

(
Local(Xi

R)⊕ Global(Xi
L)
)
,
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ˆX i
out = w ⊗ Global(Xi

L) + (1− w)⊗ Local(Xi
R),

Here, ⊕ denotes the broadcast addition which generates an attentional represen-
tation incorporating both local and global context. The function σ is a Sigmoid
function. Finally ˆX i

out ∈ RN× si
2 is used as a fused feature. To advance our model,

we need to integrate tensors of different scales ˆX 1
out,

ˆX 2
out · · · , ˆX k

out. The FPN (Feature Pyramid Networks) structure, renowned for
its ability to capture features at multiple scales, is widely used in target detection
and semantic segmentation due to its powerful feature extraction capabilities.
Inspired by the FPN, we employ a pyramid structure to aggregate different time
scales, enabling our model to integrate and leverage information from various
temporal resolutions effectively.

X̂out = Interp(. . . (Interp( ˆX 1
out) +

ˆX 2
out) + . . .) + ˆX k

out

In this process, Interp(·) is an interpolation operation where we recover high-
resolution features step-by-step by up-sampling through linear interpolation.
This method fuses multiple resolution feature layers together, effectively cap-
turing the multi-scale dynamic information of the data. This blending strategy
promotes the integration of multi-scale features into the subsequent layers, en-
hancing the model’s ability to utilize diverse temporal information.

3.4 Time Series Forecasting

The model utilizes a linear projection to map X̂out ∈ RN×L to the X̂t:t+T ∈
RN×T for prediction. The projection process is described as follows:

X̂t:t+T = X̂outWt + b.

Here, Wt ∈ RL×T and b ∈ RT are learnable parameters. X̂t:t+T is the final
prediction.

3.5 Time Series Anomaly Detection

The selection of anomaly thresholds has a greater impact on the results of
anomaly detection. We use the Peak Over Threshold (POT) [17] method, com-
monly adopted in previous research, to select the thresholds. The core idea of
the POT method is to fit the data distribution to a generalized Pareto distri-
bution and use the fitting results to determine the appropriate thresholds. This
method more accurately reflects the extremes of the data and provides more
robust anomaly detection results.

yi = {1, if ei ≥ POT(ei),
0, otherwise.

Here, ei denotes the error between the true value Xt:t+T and the predicted value
X̂t:t+T , which is used as the anomaly score. Larger errors are more likely to be
judged as anomalies. Additionally, if any of the N dimensions is anomalous, we
mark the current timestamp as an anomaly by y = ∨

i
yi.
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4 Experiments

In this section, we comprehensively evaluate the performance of multivariate
time series prediction models and the effectiveness of anomaly detection to val-
idate the efficacy of MSAnomaly.

4.1 Datasets

To evaluate MSAnomaly’s sophistication in time series anomaly detection, the
anomaly detection capability was validated on five mainstream anomaly de-
tection datasets: MSL (Mars Science Laboratory), WADI (Water Distribution
Dataset), PSM (Pooled Server Metrics Dataset), SWaT (Secure Water Treat-
ment Dataset), and SMD(Server Machine Dataset).

Table 1: Details of Anomaly Detection benchmark datasets. AR (anomaly ratio)
represents the abnormal proportion of the whole.

Dataset Train Test Dimensions Anomalies (%)

SWaT 496800 449919 51 11.98

SMD 708405 708420 38 4.16

MSL 58317 73729 55 10.72

PSM 132,481 87,841 25 27.8

WADI 1048571 172801 127 5.99

4.2 Baselines

To demonstrate the effectiveness of MSAnomaly, we comprehensively compare
it with a total of 14 state-of-the-art baseline models for anomaly detection tasks.
For anomaly detection, the baseline models include reconstruction-based models:
Anomaly Transformer [23], DCdetector [24], TranAD [20], OmniAnomaly [18],
GDN [4], InterFusion [10], LSTM-VAE [13]; density-based estimation models:
LOF [2], DAGMM [28]; and clustering-based methods: THOC [16], as well as
classical methods: OC-SVM [19].

4.3 Experimental Setups

The experiments are conducted using NVIDIA GeForce RTX 3090 24GB GPUs
with mean square error (MSE) as the training loss function.

For the anomaly detection task, we use a backtracking window of 48 and the
widely used single-step prediction method for the anomaly prediction window.
For POT parameters, the default coefficient is 10−4 for all data sets, following
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the implementation of OmniAnomaly [18]. Model training may be terminated
early if applicable. For the baseline, relevant data from the paper DCdetector
[24] or the official code were used.

4.4 Evaluation Metrics

In the anomaly detection task, MSAnomaly and all baseline models adopt the
widely used point-adjusted F1 score evaluation strategy [23, 24]. According to
this strategy, if an anomaly occurs over a period of time and any of these time
points is recognized as anomalous by the model, the entire time period is consid-
ered abnormal. This approach is justified in practice, as detecting an anomaly
at a single time point typically indicates that the entire continuous segment is
abnormal.

Recent research has sparked intense discussions on fair evaluation methods
for anomaly detection algorithms. To address this, we complement our experi-
ments with additional metrics, including the Area Under the ROC Curve (AUC),
Affiliation metric Precision (Aff-P), and Affiliation metric Recall (Aff-R). AUC
measures the performance of classification models by assessing the area under
the Receiver Operating Characteristic (ROC) curve. Aff-P and Aff-R evaluate
the precision and recall of the membership metric, respectively, providing insight
into the model’s performance regarding anomaly membership.

Table 2: Comparison of anomaly detection performance of MSAnomaly on five
real-world datasets. P, R, and F1 represent precision, recall, and F1 score, respec-
tively. All results are in %. Bold represents the best performance, and underline
indicates the second best.

Method
SWaT PSM MSL SMD WADI

P R F1 P R F1 P R F1 P R F1 P R F1

IForest 96.2 73.15 83.11 76.09 92.45 83.48 47.72 85.25 61.18 56.34 39.86 46.68 62.41 61.55 61.98

LOF 72.15 65.43 68.62 57.89 90.49 70.61 47.72 85.25 61.18 56.34 39.86 46.68 5.63 88.39 10.58

ITAD 63.13 52.08 57.08 72.8 64.02 68.13 69.44 84.09 76.07 86.22 73.71 79.48 92.11 58.79 70.25

MMPCACD 82.52 68.29 74.73 76.26 78.35 77.29 81.42 61.31 69.95 71.2 79.28 75.02 88.61 75.84 81.73

CL-MPPCA 82.52 68.29 74.73 76.26 78.35 77.29 81.42 61.31 69.95 71.2 79.28 75.02 88.61 75.84 81.73

Deep-SVDD 80.42 84.45 82.39 95.41 86.49 90.73 91.92 76.63 83.58 78.54 79.67 79.1 83.7 47.88 60.03

LSTM 86.26 83.37 84.79 76.95 89.64 82.81 85.51 82.53 83.99 78.67 85.34 81.87 72.41 27.93 40.31

DAGMM 89.92 57.84 70.4 93.49 70.03 80.08 89.6 63.93 74.62 67.3 49.89 57.3 22.28 19.76 20.94

OmniAnomaly 81.42 84.3 82.83 88.39 74.46 80.83 89.02 86.37 87.67 83.68 86.82 85.22 31.58 65.41 42.46

InterFusion 80.59 85.58 83.01 83.61 83.45 83.52 81.28 92.7 86.62 87.02 85.43 86.22 85.44 84.62 85.03

GDN 96.91 69.57 81.01 42.16 73.33 53.56 77.51 100 87.33 71.7 99.74 83.42 29.12 79.31 42.6

TranAD 97.6 69.97 81.51 86 89.86 87.89 89.51 92.97 91.15 89.06 89.82 87.85 81.18 83.01 82.08

AnomalyTrans 89.1 99.28 94.22 96.94 97.81 97.37 91.92 96.03 93.93 88.68 89.10 88.89 66.45 100 79.84

DCdetector 93.11 99.77 96.33 97.14 98.74 97.94 92.22 97.48 94.77 83.59 91.1 87.18 85.69 99.12 91.91

Ours 96.95 95.15 96.24 97.75 98.24 98.02 84.88 94.17 89.06 90.55 93.0 91.73 89.71 91.25 90.47

4.5 Anomaly Detection Performance

In terms of anomaly detection, prediction-based anomaly detection is considered
a classical approach for unsupervised point-by-point representation learning in
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Fig. 2: Visualization of Predictive Anomalies Using MSAnomaly Models.

previous studies. In this approach, prediction error naturally serves as one of the
criteria for anomaly judgments, and we adopt this classical prediction error as
our anomaly scoring criterion. We use the Peak Over Threshold (POT) method,
commonly used in previous research such as TranAD and OmniAnomaly, to
account for local peaks in the sequence and automatically select the threshold
as the anomaly score. As shown in Fig 2, we visualize the anomaly score in
dimension 6 of the SMD dataset, marking large prediction errors as anomalies.
Results in Table 2 compare MSAnomaly with 14 baseline models across five real-
world multivariate datasets using various application metrics such as precision,
recall, and F1 scores. Specifically, MSAnomaly achieves the best performance on
all three datasets.

MSAnomaly and DCdetector achieved the highest F1 scores on the WADI
dataset, with scores of 90.47% and 91.9% respectively. In contrast, other baseline
models performed poorly on this dataset due to the large data volume and long
sequence length, which traditional models struggle to handle effectively. The
success of DCdetector and MSAnomaly highlights the importance of multi-scale
time series analysis in anomaly detection. However, our model is less effective
on the MSL dataset. This is because the MSL dataset contains a large number
of discrete values, and multi-scale downsampling may result in the loss of key
information, affecting MSAnomaly’s performance. Additionally, we provide sup-
plementary metrics such as affiliation metric precision, affiliation metric recall,
and AUC to evaluate model performance comprehensively. In this comparison,
we choose the DCdetector and Anomaly Transformer as benchmarks due to their
strong anomaly detection performance. As shown in Table 3, MSAnomaly out-
performs both DCdetector and Anomaly Transformer in several metrics across
the three selected datasets.
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Table 3: Multi-metrics results are compared, all results are expressed as percent-
ages, and the best results are marked in bold.

Dataset Model Aff-P Aff-R F1 AUC

SWaT

AnomalyTrans 53.03 98.08 94.22 98.32

DCdetector 52.40 97.67 96.33 99.5

Ours 89.29 93.36 96.24 97.06

PSM

AnomalyTrans 55.35 80.28 97.37 98.42

DCdetector 54.71 82.93 97.94 98.74

Ours 79.84 96.02 98.02 99.51

SMD

AnomalyTrans 69.96 89.15 88.89 97.03

DCdetector 85.96 84.82 85.39 92.1

Ours 83.59 99.91 91.73 97.88

Notably, as shown in Table 4, our approach significantly reduces training
time for most datasets, with the reduction being especially pronounced com-
pared to DCdetector. On the SMD dataset, our method took 10 seconds longer
than AnomalyTrans, but overall performance remained superior. Our method
reduces average training time by approximately 42.15% compared to Anomaly
Trans and about 98.88% compared to DCdetector. These results demonstrate
that MSAnomaly achieves efficient training times while maintaining excellent
performance.

In summary, the MSAnomaly model demonstrates exceptional capability in
anomaly detection. It effectively identifies rare anomalous temporal patterns
from different time scale perspectives and data granularities, underscoring its
rapidity and effectiveness in diverse scenarios.

Table 4: Model efficiency comparison experimental results, the minimum model
training time is highlighted in bold.

Training Time (s/epoch) AnomalyTrans DCdetector Ours

SWaT 600 10000 250

PSM 120 1800 60

MSL 80 100 20

SMD 10 500 20

WADI 400 50000 350

Avg 242 12480 140
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4.6 Model Analysis

Sensitivity to sequence length sequence length is a critical factor influencing
the detection performance of MSAnomaly models. We extensively investigate the
impact of sequence length on anomaly detection in multivariate time series data.
Figure 3 illustrates the anomaly detection performance of MSAnomaly with vary-
ing sequence lengths. For most datasets (black, red, green, blue, and purple lines),
the F1 score generally stabilizes as sequence length increases, maintaining consis-
tent detection performance. Specifically, the F1 score increases significantly at a
sequence length of 48 and stabilizes at larger sizes. When the sequence length is
24, the F1 scores of the MSL dataset (blue line) are notably lower, indicating that
the multi-scale information captured by MSAnomaly is insufficient for accurate
anomaly detection due to the small sequence length. Overall, the F1 scores of
MSAnomaly under different sequence lengths vary minimally and remain high,
suggesting that MSAnomaly is less sensitive to sequence length changes and
has stable performance. Additionally, our experiments show that MSAnomaly
can respond and detect anomalies faster with smaller sequence lengths because
a smaller input window reduces inference time. However, if the window is too
small, the model may not fully capture the necessary local context information,
affecting detection accuracy. Conversely, if the window is too large, although the
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model can utilize richer contextual information, short-term anomalies may be
masked by normal data, reducing sensitivity to small-scale anomalies.

To balance response speed and accuracy, our experiments determine that a
sequence length of 48 is optimal. This sequence length ensures fast inference
speed and enables efficient anomaly detection without losing crucial contextual
information.

Sensitivity to training data set size We investigated the impact of train-
ing dataset size on MSAnomaly’s performance across five anomaly detection
datasets, including PSM and SwaT. Figure 4 illustrates variations in average F1
and AUC scores, as well as training time, with training data proportions ranging
from 10% to 100%. On the PSM and SwaT datasets, MSAnomaly consistently
achieved high and stable F1 and AUC scores. For the SMD dataset, the F1 score
peaked at 40% training data, with minor fluctuations at other proportions. The
MSL and WADI datasets showed minimal variability, indicating consistent per-
formance across different training data proportions. Training time significantly
increased with larger training data proportions, especially for the WADI dataset
due to its size and high feature dimensionality. However, training times for the
other datasets remained relatively low, demonstrating efficient training capabil-
ities. Overall, MSAnomaly performed exceptionally well, maintaining efficiency
and stability even with smaller training datasets. To balance efficiency and per-
formance, we use 40%-70% of the data for training, ensuring high F1 and AUC
scores while keeping training time reasonable.

5 Conclusion

We propose MSAnomaly, a multi-scale data augmentation approach and multi-
scale fusion block for time series modeling and anomaly detection. MSAnomaly
enhances the precision of detecting deviations from normal data distributions
by fusing intricate sequence patterns across multiple temporal resolutions. Our
findings emphasize the importance of fusing features across different time scales
in time series data analysis. Extensive experiments and validations on various
real-world datasets demonstrate that MSAnomaly not only outperforms existing
models in terms of performance but also effectively captures complex multi-scale
dependencies across different time scales. Specifically, Compared with state-of-
the-art models, MSAnomaly significantly reduces training time while maintain-
ing anomaly detection performance, enabling fast and accurate anomaly pre-
diction and analysis. We plan to enhance MSAnomaly further to handle data
collected at irregular time intervals and improve its robustness against noisy and
missing data. Additionally, we will explore other approaches to further improve
the accuracy of MSAnomaly in time series anomaly detection, making it more
effective in a wider range of practical applications.
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